
Building Reproducible
Analytical Pipelines

Master of Data Science, University of
Luxembourg - 2024

Bruno Rodrigues

2024-11-04

Table of contents

Introduction 1
Schedule . 1
Reproducible analytical pipelines? 2
Data products? . 2
Machine learning? . 3
What actually is reproducibility? 4

The requirements of a RAP 4
Why R? Why not [insert your favourite programming

language] . 5
Pre-requisites . 8
Grading . 9
Jargon . 10
Further reading . 11
License . 11

1 Introduction to R 13
1.1 Reading in data with R 15
1.2 A little aside on pipes 16
1.3 Exploring and cleaning data with R 17
1.4 Data visualization 18
1.5 Further reading 18

2 A primer on functional programming 19
2.1 Introduction . 21
2.2 Defining your own functions 29
2.3 Functional programming 31

iii

Table of contents

2.4 Further reading 32

3 Git 33
3.1 Introduction . 35
3.2 Installing Git . 36
3.3 Setting up a repo 37
3.4 Cloning the repository onto your computer 47
3.5 Your first commit 52
3.6 Collaborating . 76
3.7 Branches . 93
3.8 Contributing to someone else’s repository 103

4 Package development 105
4.1 Introduction . 107
4.2 Getting started 108
4.3 Adding functions 112

4.3.1 Functions dependencies 115
4.4 Documentation 123

4.4.1 Documenting functions 124
4.4.2 Documenting the package 128
4.4.3 Checking your package 132
4.4.4 Installing your package 133

4.5 Further reading 134

5 Unit tests 135
5.1 Introduction . 137
5.2 Testing your package 137

5.2.1 Is the function returning an expected
value for a given input? 143

5.2.2 Can the function deal with all kinds of
input? . 149

5.3 Back to developing again 151
5.4 And back to testing 158

iv

Table of contents

6 Setting up pipelines with {targets} 167
6.1 Introduction . 169
6.2 Build automation with R 169
6.3 An aside on {renv} 171
6.4 Our actual first pipeline 182
6.5 Running someone else’s pipeline 199
6.6 Why we need more 201
6.7 Further reading 202

7 Data products 203
7.1 Introduction . 205
7.2 A first taste of Quarto 205

7.2.1 Python and Julia code chunks 213
7.3 Other output formats 224

7.3.1 Word . 224
7.3.2 Presentations 230
7.3.3 PDF . 230

7.4 Interactive web applications with {shiny} 233
7.4.1 The basic structure of a Shiny app 234
7.4.2 Slightly more advanced shiny 238
7.4.3 Basic optimization of Shiny apps 245
7.4.4 Deploying your shiny app 256
7.4.5 References 256

7.5 How to build data products using {targets} . . 256

8 Self-contained RAPs with Docker 265
8.1 Introduction . 267
8.2 Installing Docker 268
8.3 The Rocker Project 270
8.4 Docker essentials 272
8.5 Making our own images and run some code . . . 274
8.6 Reproducibility with Docker 278
8.7 Building a truly reproducible pipeline 282
8.8 One last thing . 288

v

Table of contents

8.9 Further reading 289

9 Intro to CI/CD with Github Actions 291
9.1 Introduction . 293
9.2 Getting your repo ready for Github Actions . . . 294
9.3 Building a Docker image and pushing it to a registry300
9.4 Running a pipeline straight from Github Actions 300
9.5 Running unit tests on Github Actions 302
9.6 Further reading 304

10 Reproducibility with Nix 305
10.1 The Nix package manager 307
10.2 The Nix programming language 308
10.3 The Nix package repository 309
10.4 The NixOS operating system, Docker and Github

Actions . 310
10.5 A first Nix expression 310
10.6 The {rix} package 313
10.7 Running a pipeline with Nix 315
10.8 CI/CD with Nix 316
10.9 A polyglot environment 316
10.10Conclusion . 316

11 What else should you learn? 319
11.1 Touch typing . 319
11.2 Vim . 320
11.3 Statistical modeling 320

12 Conclusion 321
12.1 Why bother . 321

vi

Introduction

This is the 2024 edition of the course. If you’re looking for the
2023 edition, you can click here

What’s new:

• The book is now built using Quarto
• Updated links to newer materials
• Longer chatper on Github Actions
• New chapter on reproducibility with Nix

This course is based on my book titled Building Reproducible
Analytical Pipelines with R. This course focuses only on certain
aspects that are discussed in greater detail in the book.

Schedule

• 2024/11/04 - 4 hours, Introduction to reproducibility and
functional programming

• 2024/11/11 - 4 hours, Version control with Git, Package
development and unit testing

• 2024/11/14 - 4 hours, Build automation
• 2024/12/02 - 4 hours, Literate programming and Shiny
• 2024/12/05 - 2 hours, Self-contained pipelines with Docker
• 2024/12/09 - 5 hours, CI/CD with Github Actions
• 2024/12/16 - 4 hours, Reproducibility with Nix

1

https://b-rodrigues.github.io/rap4mads_2023/
https://raps-with-r.dev/
https://raps-with-r.dev/

Introduction

• 2024/12/19 - 3 hours, Wrap-up

Reproducible analytical pipelines?

This course is my take on setting up code that results in some
data product. This code has to be reproducible, documented and
production ready. Not my original idea, but introduced by the
UK’s Analysis Function.

The basic idea of a reproducible analytical pipeline (RAP) is to
have code that always produces the same result when run, what-
ever this result might be. This is obviously crucial in research
and science, but this is also the case in businesses that deal with
data science/data-driven decision making etc.

A well documented RAP avoids a lot of headache and is usually
re-usable for other projects as well.

Data products?

In this course each of you will develop a data product. A data
product is anything that requires data as an input. This can
be a very simple report in PDF or Word format or a complex
web app. This website is actually also a data product, which I
made using the R programming language. In this course we will
not focus too much on how to create automated reports or web
apps (but I’ll give an introduction to these, don’t worry) but our
focus will be on how to set up a pipeline that results in these
data products in a reproducible way.

2

https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/

Machine learning?

Machine learning?

No, being a master in machine learning is not enough to become
a data scientist. Actually, the older I get, the more I think that
machine learning is almost optional. What is not optional is
knowing how:

• to write, test, and properly document code;
• to acquire (reading in data can be tricky!) and clean data;
• to work inside the Linux terminal/command line interface;
• to use Git, Docker for Dev(Git)Ops;
• the Internet works (what’s a firewall? what’s a reverse

proxy? what’s a domain name? etc, etc…);

But what about machine learning? Well, depending what you’ll
end up doing, you might indeed focus a lot on machine learn-
ing and/or statistical modeling. That being said, in practice, it
is very often much more efficient to let some automl algorithm
figure out the best hyperparameters of a XGBoost model and
simply use that, at least as a starting point (but good luck im-
proving upon automl…). What matters, is that the data you’re
feeding to your model is clean, that your analysis is sensible,
and most importantly, that it could be understood by someone
taking over (imagine you get sick) and rerun with minimal ef-
fort in the future. The model here should simply be a piece that
could be replaced by another model without much impact. The
model is rarely central… but of course there are exceptions to
this, especially in research, but every other point I’ve made still
stands. It’s just that not only do you have to care about your
model a lot, you also have to care about everything else.

So in this course we’re going to learn a bit of all of this. We’re
going to learn how to write reusable code, learn some basics of
the Linux command line, Git and Docker.

3

Introduction

What actually is reproducibility?

A reproducible project means that this project can be rerun
by anyone at 0 (or very minimal) cost. But there are different
levels of reproducibility, and I will discuss this in the next section.
Let’s first discuss some requirements that a project must have
to be considered a RAP.

The requirements of a RAP

For something to be truly reproducible, it has to respect the
following bullet points:

• Source code must obviously be available and thoroughly
tested and documented (which is why we will be using Git
and Github);

• All the dependencies must be easy to find and install (we
are going to deal with this using dependency management
tools);

• To be written with an open source programming language
(nocode tools like Excel are by default non-reproducible
because they can’t be used non-interactively, and which is
why we are going to use the R programming language);

• The project needs to be run on an open source operating
system (thankfully, we can deal with this without having
to install and learn to use a new operating system, thanks
to Docker);

• Data and the paper/report need obviously to be accessible
as well, if not publicly as is the case for research, then
within your company.

Also, reproducibility is on a continuum, and depending on the
constraints you face your project can be “not very reproducible”

4

Why R? Why not [insert your favourite programming language]

to “totally reproducible”. Let’s consider the following list of
anything that can influence how reproducible your project truly
is:

• Version of the programming language used;
• Versions of the packages/libraries of said programming lan-

guage used;
• Operating System, and its version;
• Versions of the underlying system libraries (which often go

hand in hand with OS version, but not necessarily).
• And even the hardware architecture that you run all that

software stack on.

So by “reproducibility is on a continuum”, what I mean is that
you could set up your project in a way that none, one, two, three,
four or all of the preceding items are taken into consideration
when making your project reproducible.

This is not a novel, or new idea. Peng (2011) already discussed
this concept but named it the reproducibility spectrum.

Why R? Why not [insert your favourite
programming language]

In my absolutely objective opinion R is currently the most in-
teresting and simple language you can use to create such data
products. If you learn R you have access to almost 20’000 pack-
ages (as of October 2023) to:

• clean data (see: {dplyr}, {tidyr}, {data.table}…);
• work with medium and big data (see: {arrow},

{sparklyr}…);
• visualize data (see: {ggplot2}, {plotly}, {echarts4r}…);

5

Introduction

• do literate programming (using Rmarkdown or Quarto,
you can write books, documents even create a website);

• do functional programming (see: {purrr}…);
• call other languages from R (see: {reticulate} to call

Python from R);
• do machine learning and AI (see: {tidymodels},

{tensorflow}, {keras}…)
• create webapps (see: {shiny}…)
• domain specific statistics/machine learning (see CRAN

Task Views for an exhaustive list);
• and more

It’s not just about what the packages provide: installing R and
its packages and dependencies is rarely frustrating, which is not
the case with Python (Python 2 vs Python 3, pip vs conda,
pyenv vs venv vs uv, …, dependency hell is a real place full of
snakes)

6

https://cran.r-project.org/web/views/
https://cran.r-project.org/web/views/

Why R? Why not [insert your favourite programming language]

That doesn’t mean that R does not have any issues. Quite

7

Introduction

the contrary, R sometimes behaves in seemingly truly bizarre
ways (as an example, try running nchar("1000000000") and
then nchar(1000000000) and try to make sense of it). To know
more about such bizarre behaviour, I recommend you read The
R Inferno (linked at the end of this chapter). So, yes, R is far
from perfect, but it sucks less than the alternatives (again, in
my absolutely objective opinion).

nchar("1000000000")

Pre-requisites

I will assume basic programming knowledge, and not much more.
If you need to set up R on your computer you can read the intro
to my other book Modern R with the tidyverse. Follow the
pre-requisites there: install R, RStudio and these packages:

install.packages(c("Ecdat", "devtools", "janitor",
"plm", "pwt9",↪

"quarto", "renv", "rio", "shiny", "targets",
"tarchetypes",↪

"testthat", "tidyverse", "usethis"))

The course will be very, very hands-on. I’ll give general hints
and steps, and ask you to do stuff. It will not always be 100%
simple and obvious, and you will need to also think a bit by
yourself. I’ll help of course, so don’t worry. The idea is to put
you in the shoes of a real data scientist that gets asked at 9 in
the morning to come up with a solution to a problem by COB. In
99% of the cases, you will never have encountered that problem
ever, as it will be very specific to the company you’re working

8

https://b-rodrigues.github.io/modern_R/index.html#prerequisites

Grading

at. Google and Stackoverflow will be your only friends in these
moments.

The beginning of this course will likely be the toughest part,
especially if you’re not familiar with R. I will need to bring you
up to speed in 6 hours. Only after can we actually start talking
about RAPs. What’s important is to never give up and work
together with me.

Grading

The way grading works in this course is as follows: during lecture
hours you will follow along. At home, you’ll be working on
setting up your own pipeline. For this, choose a dataset that
ideally would need some cleaning and/or tweaking to be usable.
We are going first to learn how to package this dataset alongside
some functions to make it clean. If time allows, I’ll leave some
time during lecture hours for you to work on it and ask me
and your colleagues for help. At the end of the semester, I
will need to download your code and get it running. The less
effort this takes me, the better your score. Here is a tentative
breakdown:

• Code is on github.com and the repository is documented
with a Readme.md file: 5 points;

• Data and functions to run pipeline are documented and
tested: 5 points;

• Every software dependency is easily installed: 5 points;
• Pipeline can be executed in one command: 5 points;
• Bonus points: pipeline is dockerized, or uses Nix, and/or

uses Github Actions to run? 5 points

9

Introduction

The way to fail this class is to write an undocumented script
that only runs on your machine and expect me to debug it to
get it to run.

Jargon

There’s some jargon that is helpful to know when working with
R. Here’s a non-exhaustive list to get you started:

• CRAN: the Comprehensive R Archive Network. This is
a curated online repository of packages and R installers.
When you type install.packages("package_name") in
an R console, the package gets downloaded from there;

• Library: the collection of R packages installed on your
machine;

• R console: the program where the R interpreter runs;
• Posit/RStudio: Posit (named RStudio in the past) are the

makers of the RStudio IDE and of the tidyverse collection
of packages;

• tidyverse: a collection of packages created by Posit that
offer a common language and syntax to perform any task
required for data science — from reading in data, to clean-
ing data, up to machine learning and visualisation;

• base R: refers to a vanilla installation (and vanilla capabil-
ities) of R. Often used to contrast a tidyverse specific ap-
proach to a problem (for example, using base R’s lapply()
in constrast to the tidyverse purrr::map()).

• package::function(): Functions can be accessed in sev-
eral ways in R, either by loading an entire package at
the start of a script with library(dplyr) or by using
dplyr::select().

10

Further reading

• Function factory (sometimes adverb): a function that re-
turns a function.

• Variable: the variable of a function (as in x in f(x)) or the
variable from statistical modeling (synonym of feature)

• <- vs =: in practice, you can use <- and = interchangeably.
I prefer <-, but feel free to use = if you wish.

Further reading

• An Introduction to R (from the R team themselves)
• What is CRAN?
• The R Inferno
• Building Reproducible Analytical Pipelines with R
• Reproducible Analytical Pipelines (RAP)

License

This course is licensed under the WTFPL.

11

https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-CRAN_003f
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://raps-with-r.dev/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/
http://www.wtfpl.net/txt/copying/

13

1 Introduction to R

1 Introduction to R

14

1.1 Reading in data with R

What you’ll have learned by the end of the chapter: reading and
writing, exploring (and optionally visualising) data.

1.1 Reading in data with R

Your first job is to actually get the following datasets into an R
session.

First install the {rio} package (if you don’t have it already),
then download the following datasets:

• mtcars.csv
• mtcars.dta
• mtcars.sas7bdat
• multi.xlsx

Also download the following 4 csv files and put them in a direc-
tory called unemployment:

• unemp_2013.csv
• unemp_2014.csv
• unemp_2015.csv
• unemp_2016.csv

Finally, download this one as well, but put it in a folder called
problem:

• mtcars.csv

and take a look at chapter 3 of my other book, Modern R with
the {tidyverse} and follow along. This will teach you to import
and export data.

{rio} is some kind of wrapper around many packages. You
can keep using {rio}, but it is also a good idea to know which

15

https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/mtcars.csv
https://github.com/b-rodrigues/modern_R/raw/master/datasets/mtcars.dta
https://github.com/b-rodrigues/modern_R/raw/master/datasets/mtcars.sas7bdat
https://github.com/b-rodrigues/modern_R/raw/master/datasets/multi.xlsx
https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2013.csv
https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2014.csv
https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2015.csv
https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2016.csv
https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/problems/mtcars.csv
https://b-rodrigues.github.io/modern_R/reading-and-writing-data.html
https://b-rodrigues.github.io/modern_R/reading-and-writing-data.html

1 Introduction to R

packages are used under the hood by {rio}. For this, you can
take a look at this vignette.

If you need to import very large datasets (potentially several
GBs), you might want to look at packages like {vroom} (this
benchmark shows a 1.5G csv file getting imported in seconds
by {vroom}. For even larger files, take a look at {arrow} here.
This package is able to efficiently read very large files (csv, json,
parquet and feather formats).

1.2 A little aside on pipes

Since R version 4.1, a forward pipe |> is included in the standard
library of the language. It allows to do this:

4 |>
sqrt()

Before R version 4.1, there was already a forward pipe, intro-
duced with the {magrittr} package (and automatically loaded
by many other packages from the tidyverse, like {dplyr}):

library(dplyr)

4 %>%
sqrt()

Both expressions above are equivalent to sqrt(4). You will see
why this is useful very soon. For now, just know this exists and
try to get used to it.

16

https://cran.r-project.org/web/packages/rio/vignettes/rio.html
https://vroom.r-lib.org/articles/benchmarks.html#reading-delimited-files
https://vroom.r-lib.org/articles/benchmarks.html#reading-delimited-files
https://arrow.apache.org/docs/r/

1.3 Exploring and cleaning data with R

1.3 Exploring and cleaning data with R

Take a look at chapter 4 of my other book, ideally you should
study the entirety of the chapter, but for our purposes you
should really focus on sections 4.3, 4.4, 4.5.3, 4.5.4, (optionally
4.7) and 4.8.

You should be able to read and understand expressions like the
one below after having read the chapters above.

starwars %>%
group_by(sex) %>%
summarise(mean_height = mean(height, na.rm =
TRUE))↪

While optional, the concept of list-columns is quite powerful and
I wanted to say a few words about it. Take a look at the types
of columns of the starwars dataset:

str(head(starwars, 9))

Each of the elements of the column films is a list. For exam-
ple:

starwars %>%
filter(name == "Luke Skywalker") %>%
.$films

Because lists are very flexible and can contain any data type, it is
possible to have a list-column of data frames. This is extremely
useful to operate on groups without having to use loops:

17

https://b-rodrigues.github.io/modern_R/descriptive-statistics-and-data-manipulation.html#a-first-taste-of-data-manipulation-with-dplyr

1 Introduction to R

starwars %>%
group_nest(sex)

It is now possible to apply any function that takes a data frame
as an input to each data frame from the data list-column:

starwars %>%
group_nest(sex) %>%
mutate(regression = lapply(data, \(x)(lm(height ~
mass, data = x))),↪

summary = lapply(regression, summary))

1.4 Data visualization

We’re not going to focus on visualization due to lack of time. If
you need to create graphs, read chapter 5.

1.5 Further reading

R for Data Science

18

https://b-rodrigues.github.io/modern_R/graphs.html
https://r4ds.had.co.nz/

19

2 A primer on functional programming

2 A primer on functional
programming

20

2.1 Introduction

What you’ll have learned by the end of the chapter: writing
your own functions, functional programming basics (map, re-
duce, anonymous functions and higher-order functions).

2.1 Introduction

Functional programming is a way of writing programs that re-
lies exclusively on the evalutation of functions. Mathematical
functions have a very neat property: for any given input, they
ALWAYS return exactly the same output. This is what we want
to achieve with the functions that we will write. Functions that
always return the same result are called pure, and a language
that only allows writing pure functions is called a pure functional
programming language. R is not a pure functional programming
language, so we have to be careful not to write impure functions
that manipulate the global state.

But what is state? Run the following code in your console:

ls()

This will list every object defined in the global environment.
Now run the following line:

x <- 1

and then ls() again. x should now be listed alongside the other
objects. You just manipulated the state of your current R ses-
sion. Now if you run something like:

21

2 A primer on functional programming

x + 1

This will produce 2. We want to avoid pipelines that depend on
some definition of some global variable somewhere, which could
be subject to change, because this could mean that 2 different
runs of the same pipeline could produce 2 different results. No-
tice that I used the verb avoid in the sentence before. This is
sometimes not possible to avoid. Such situations have to be
carefully documented and controlled.

As a more realistic example, imagine that within the pipeline
you set up, some random numbers are generated. For example,
to generate 10 random draws from a normal distribution:

rnorm(n = 10)

Each time you run this line, you will get another set of 10 ran-
dom numbers. This is obviously a good thing in interactive data
analysis, but much less so when running a pipeline programmat-
ically. R provides a way to fix the random seed, which will make
sure you always get the same random numbers:

set.seed(1234)
rnorm(n = 10)

But set.seed() only works for one call, so you must call it
again if you need the random numbers again:

set.seed(1234)
rnorm(10)

22

2.1 Introduction

rnorm(10)

set.seed(1234)
rnorm(10)

The problem with set.seed() is that you only partially solve
the problem of rnorm() not being pure; this is because while
rnorm() now does return the same output for the same input,
this only works if you manipulate the state of your program to
change the seed beforehand. Ideally, we would like to have a
pure version of rnorm(), which would be self-contained and not
depend on the value of the seed defined in the global environ-
ment. There is a package developped by Posit (the makers of
RStudio and the packages from the tidyverse), called {withr}
which allows to rewrite our functions in a pure way. {withr}
has several functions, all starting with with_ that allow users to
run code with some temporary defined variables, without alter-
ing the global environment. For example, it is possible to run a
rnorm() with a seed, using withr::with_seed():

library(withr)

with_seed(seed = 1234, {
rnorm(10)

})

But ideally you’d want to go a step further and define a new
function that is pure. To turn an impure function into a pure
function, you usually only need to add some arguments to it.
This is how we would create a pure_rnorm() function:

23

2 A primer on functional programming

pure_rnorm <- function(..., seed){

with_seed(seed, rnorm(...))
}

pure_rnorm(10, seed = 1234)

pure_rnorm() is now self-contained, and does not pollute the
global environment. We’re going to learn how to write functions
in just a bit, so don’t worry if the code above does not make
sense yet.

24

2.1 Introduction

A very practical consequence of using functional programming

25

2 A primer on functional programming

is that loops are not used, because loops are imperative and im-
perative programming is all about manipulating state. However,
there are situations where loops are more efficient than the al-
ternative (in R at least). So we will still learn and use them, but
only when absolutely necessary, and we will always encapsulate
a loop inside a function. Just like with the example above, this
ensures that we have a pure, self-contained function that we can
reason about easily. What I mean by this, is that loops are not
always very easy to decipher. The concept of loops is simple
enough: take this instruction, and repeat it N times. But in
practice, if you’re reading code, it is not possible to understand
what a loop is doing at first glance. There are only two solutions
in this case:

• you’re lucky and there are comments that explain what
the loop is doing;

• you have to let the loop run either in your head or in a
console with some examples to really understand whit is
going on.

For example, consider the following code:

library(dplyr)

data(starwars)

sum_humans <- 0
sum_others <- 0
n_humans <- 0
n_others <- 0

for(i in seq_along(1:nrow(starwars))){

if(!is.na(unlist(starwars[i, "species"])) &

26

2.1 Introduction

unlist(starwars[i, "species"]) == "Human"){
if(!is.na(unlist(starwars[i, "height"]))){
sum_humans <- sum_humans + unlist(starwars[i,

"height"])↪

n_humans <- n_humans + 1
} else {

0

}

} else {
if(!is.na(unlist(starwars[i, "height"]))){
sum_others <- sum_others + unlist(starwars[i,

"height"])↪

n_others <- n_others + 1
} else {
0

}
}

}

mean_height_humans <- sum_humans/n_humans
mean_height_others <- sum_others/n_others

What this does is not immediately obvious. The only hint you
get are the two last lines, where you can read that we compute
the average height for humans and non-humans in the sample.
And this code could look a lot worse, because I am using func-
tions like is.na() to test if a value is NA or not, and I’m using
unlist() as well. If you compare this mess to a functional ap-
proach, I hope that I can stop my diatribe against imperative
style programming here:

27

2 A primer on functional programming

starwars %>%
group_by(is_human = species == "Human") %>%
summarise(mean_height = mean(height, na.rm =
TRUE))↪

Not only is this shorter, it doesn’t even need any comments to
explain what’s going on. If you’re using functions with explicit
names, the code becomes self-explanatory.

The other advantage of a functional (also called declarative) pro-
gramming style is that you get function composition for free.
Function composition is an operation that takes two functions
g and f and returns a new function h such that ℎ(𝑥) = 𝑔(𝑓(𝑥)).
Formally:

h = g � f such that h(x) = g(f(x))

� is the composition operator. You can read g � f as g after f.
When using functional programming, you can compose functions
very easily, simply by using |> or %>%:

h <- f |> g

f |> g can be read as f then g, which is equivalent to g after
f. Function composition might not seem like a big deal, but
it actually is. If we structure our programs in this way, as a
sequence of function calls, we get many benefits. Functions are
easy to test, document, maintain, share and can be composed.
This allows us to very succintly express complex workflows:

28

2.2 Defining your own functions

starwars %>%
filter(skin_color == "light") %>%
select(species, sex, mass) %>%
group_by(sex, species) %>%
summarise(
total_individuals = n(),
min_mass = min(mass, na.rm = TRUE),
mean_mass = mean(mass, na.rm = TRUE),
sd_mass = sd(mass, na.rm = TRUE),
max_mass = max(mass, na.rm = TRUE),
.groups = "drop"

) %>%
select(-species) %>%
tidyr::pivot_longer(-sex, names_to = "statistic",
values_to = "value")↪

Needless to say, writing this in an imperative approach would
be quite complicated.

Another consequence of using functional programming is that
our code will live in plain text files, and not in Jupyter (or equiv-
alent) notebooks. Not only does imperative code have state, but
notebooks themselves have a (hidden) state. You should avoid
notebooks at all costs, even for experimenting.

2.2 Defining your own functions

Let’s first learn about actually writing functions. Read chapter
7 of my other book.

The most important concepts for this course are discussed in the
following sections:

29

https://b-rodrigues.github.io/modern_R/defining-your-own-functions.html
https://b-rodrigues.github.io/modern_R/defining-your-own-functions.html

2 A primer on functional programming

• functions that take functions as arguments (section 7.4)

my_func <- function(x, func, ...){
func(x, ...)

}

my_func(c(1, 8, 1, NA, 8), mean, na.rm = TRUE)

• functions that take data (and the data’s columns) as ar-
guments (section 7.6);

simple_function <- function(dataset, col_name,
var_name, fn_name){↪

dataset %>%
group_by(across({{col_name}})) %>%
summarise("{{fn_name}}_{{var_name}}" :=
{{fn_name}}({{var_name}}))↪

}

Group by one column
simple_function(mtcars, vs, mpg, sd)

Group by several columns
simple_function(mtcars, c(am, vs), mpg, sd)

Even more general: group by any columns and apply
any number of functions↪

simple_function <- function(dataset, cols, vars,
fns){↪

dataset %>%
group_by(across({{cols}})) %>%
summarise(across({{vars}}, fns, .names =
"{.fn}_{.col}"))↪

30

https://b-rodrigues.github.io/modern_R/defining-your-own-functions.html#functions-that-take-functions-as-arguments-writing-your-own-higher-order-functions
https://b-rodrigues.github.io/modern_R/defining-your-own-functions.html#functions-that-take-columns-of-data-as-arguments

2.3 Functional programming

}

simple_function(mtcars, c(am, vs), c(mpg, hp),
list("mean" = mean, "sd" = sd))↪

Read more about it here and here.

2.3 Functional programming

You should ideally work through the whole of chapter 7, and
then tackle chapter 8. What’s important there are:

• purrr::map(), purrr::reduce() (sections 8.3.1 and
8.3.2)

Apply a function to each element of a vector or list:

map(seq(1:10), sqrt)

(lapply() is a base function that works similarly to
purrr::map())

Reduce a vector to a single element by iteratively applying a
function:

reduce(seq(1:10), `+`)

• And list based workflows (section 8.4)

31

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/articles/programming.html
https://b-rodrigues.github.io/modern_R/functional-programming.html
https://b-rodrigues.github.io/modern_R/functional-programming.html#doing-away-with-loops-the-map-family-of-functions
https://b-rodrigues.github.io/modern_R/functional-programming.html#reducing-with-purrr
https://b-rodrigues.github.io/modern_R/functional-programming.html#functional-programming-and-plotting

2 A primer on functional programming

2.4 Further reading

• Cleaner R Code with Functional Programming
• Functional Programming (Chapter from Advanced R)
• Why you should(n’t) care about Monads if you’re an R

programmer
• Some learnings from functional programming you can use

to write safer programs

32

https://towardsdatascience.com/cleaner-r-code-with-functional-programming-adc37931ef7a
https://adv-r.hadley.nz/fp.html
https://www.brodrigues.co/blog/2022-04-11-monads/
https://www.brodrigues.co/blog/2022-04-11-monads/
https://www.brodrigues.co/blog/2022-05-26-safer_programs/
https://www.brodrigues.co/blog/2022-05-26-safer_programs/

33

3 Git

3 Git

34

3.1 Introduction

What you’ll have learned by the end of the chapter: basics of
working alone, and collaboration, using Git.

3.1 Introduction

Git is a software for version control. Version control is absolutely
essential in software engineering, or when setting up a RAP. If
you don’t install a version control system such as Git, don’t
even start trying to set up a RAP. But what does a version
control system like Git actually do? The basic workflow of Git
is as follows: you start by setting up a repository for a project.
On your computer, this is nothing more than a folder with your
scripts in it. However, if you’re using Git to keep track of what’s
inside that folder, there will be a hidden .git folder with a
bunch of files in it. You can forget about that folder, this is
for Git’s own internal needs. What matters, is that when you
make changes to your files, you can first commit these changes,
and then push them back to a repository. Collaborators can
copy this repository and synchronize their files saved on their
computers with your changes. Your collaborators can then also
work on the files, then commit and push the changes to the
repository as well.

You can then pull back these changes onto your computer, add
more code, commit, push, etc… Git makes it easy to collaborate
on projects either with other people, or with future you. It is
possible to roll back to previous versions of your code base, you
can create new branches of your project to test new features
(without affecting the main branch of your code), collaborators
can submit patches that you can review and merge, and and
and…

35

3 Git

In my experience, learning git is one of the most difficult things
there is for students. And this is because Git solves a complex
problem, and there is no easy way to solve a complex problem.
But I would however say that Git is not unnescessarily complex.
So buckle up, because this chapter is not going to be easy.

Git is incredibly powerful, and absolutely essential in our line of
work, it is simply not p ossible to not know at least some basics
of Git. And this is what we’re going to do, learn the basics, it’ll
keep us plenty busy already.

But for now, let’s pause for a brief moment and watch this video
that explains in 2 minutes the general idea of Git.

Let’s get started.

You might have heard of github.com: this is a website that allows
programmers to set up repositories on which they can host their
code. The way to interact with github.com is via Git; but there
are many other website like github.com, such as gitlab.com and
bitbucket.com.

For this course, you should create an account on github.com.
This should be easy enough. Then you should install Git on
your computer.

3.2 Installing Git

Installing Git is not hard; it installs like any piece of software on
your computer. If you’re running a Linux distribution, chances
are you already have Git installed. To check if it’s already in-
stalled on a Linux system, open a terminal and type which git.
If a path gets returned, like usr/bin/gin, congratulations, it’s
installed, if the command returns nothing you’ll have to install

36

https://www.youtube.com/watch?v=2ReR1YJrNOM
https://github.com
https://gitlab.com
https://bitbucket.com
https://github.com

3.3 Setting up a repo

it. On Ubuntu, type sudo apt-get install git and just wait
a bit. If you’re using macOS or Windows, you will need to in-
stall it manually. For Windows, download the installer from
here, and for macOS from here; you’ll see that there are sev-
eral ways of installing it on macOS, if you’ve never heard of
homebrew or macports then install the binary package from
https://sourceforge.net/projects/git-osx-installer/.

3.3 Setting up a repo

Ok so now that Git is installed, we can actually start using it.
First, let’s start by creating a new repository on github.com. As
I’ve mentioned in the introductory paragraph, Git will allow you
to interact with github.com, and you’ll see in what ways soon
enough. For now, login to your github.com account, and create
a new repository by clicking on the ‘plus’ sign in the top right
corner of your profile page and then choose ‘New repository’:

37

https://gitforwindows.org/
https://git-scm.com/download/mac

3 Git

38

3.3 Setting up a repo

In the next screen, choose a nice name for your repository and
ignore the other options, they’re not important for now. Then
click on ‘Create repository’:

39

3 Git

40

3.3 Setting up a repo

Ok, we’re almost done with the easy part. The next screen tells
us we can start interacting with the repository. For this, we’re
first going to click on ‘README’:

41

3 Git

42

3.3 Setting up a repo

This will add a README file that we can also edit from github.com
directly:

43

3 Git

44

3.3 Setting up a repo

Add some lines to the file, and then click on ‘Commit new file’.
You’ll end up on the main page of your freshly created repository.
We are now done with setting up the repository on github.com.
We can now clone the repository onto our machines. For this,
click on ‘Code’, then ‘SSH’ and then on the copy icon:

45

3 Git

Now, to make things easier on you, we’re going to use Rstudio as
an interface for Git. But you should know that Git can be used

46

3.4 Cloning the repository onto your computer

independently from a terminal application on Linux or macOS,
or from Git Bash on Windows, and you should definitely get
familiar with the Linux/macOS command line at some point
if you wish to become a data scientist. This is because most
servers, if not all, that you are going to interact with in your
career are running some flavour of Linux. But since the Linux
command line is outside the scope of this course, we’ll use Rstu-
dio instead (well, we’ll use it as much as we can, because at some
point it won’t be enough and have to use the terminal instead
anyways…).

3.4 Cloning the repository onto your
computer

Start Rstudio and click on ‘new project’ and then ‘Version Con-
trol’:

47

3 Git

Then choose ‘Git’:

48

3.4 Cloning the repository onto your computer

Then paste the link from before into the ‘Repository URL’ field,
the ‘project directory name’ will fill out automatically, choose
where to save the repository in your computer, click on ‘Open
in new session’ and then on ‘Create Project’:

49

3 Git

A new Rstudio window should open. There are several things
that you should pay attention to now:

50

3.4 Cloning the repository onto your computer

51

3 Git

Icon (1) indicates that this project is git-enabled so to speak.
(2) shows you that Rstudio is open inside the example_repo (or
whatever you named your repo to) project, and (3) shows you
the actual repository that was downloaded from github.com at
the path you chose before. You will also see the README file that
we created before.

3.5 Your first commit

Let’s now create a simple script and add some lines of code to
it, and save it. Check out the Git tab now, you should see your
script there, alongside a ? icon:

52

3.5 Your first commit

We are now ready to commit the file, but first let’s check out
what actually changed. If you click on Diff, a new window will
open with the different files that changed since last time:

53

3 Git

Icon (1) shows you the list of files that changed. We only cre-
ated the file called my_script.R, but two other files are listed
as well. These files are automatically generated when starting a
new project. .gitignore lists files and folders that Git should
not track, meaning, any change that will affect these files will
be ignored by Git. This means that these files will also not be
uploaded to github.com when committing. The file ending with
the .Rproj extension is a RStudio specific file, which simply de-
fines some variables that help RStudio start your project. What
matters here is that the files you changed are listed, and that you
saved them. You can double check that you actually correctly
saved your files by looking at (2), which lists the lines that were

54

3.5 Your first commit

added (added lines will be highlighted in green, deleted lines in
red). In (3) you can write a commit message. This message
should be informative enough that a coworker, or future you,
can read through them and have a rough idea of what changed.
Best practice is to commit often and early, and try to have one
commit per change (per file for example, or per function within
that file) that you make. Let’s write something like: “Started
project: first graph done” as the commit message. We’re almost
done: now let’s stage the files for this commit. This means that
we can choose which files should actually be included in this
commit. You can only stage one file, several files, or all files.
Since this is our first commit, let’s stage everything we’ve got,
by simply clicking on the checkboxes below the column Staged
in (1).

55

3 Git

The status of the files now changed: they’ve been added for this
commit. We can now click on the Commit button. Now these
changes have been committed there are no unstaged files any-
more. We have two options at this point: we can continue work-
ing, and then do another commit, or we can push our changes
to github.com. Committing without pushing does not make our
changes available to our colleagues, but because we committed
them, we can recover our changes. For example, if I continue
working on my file and remove some lines by mistake, I can re-
cover them (I’ll show you how to do this later on). But it is
a much better idea to push our commit now. This makes our
changes available to colleagues (who need to pull the changes
from github.com) and should our computer spontaneously com-

56

3.5 Your first commit

bust, at least or work is now securely saved on github.com. So
let’s Push:

Ooooooops! Something’s wrong! Apparently, we do not have
access rights to the repo? This can sound weird, because after
all, we created the repo with our account and then cloned it.
So what’s going on? Well, remember that anyone can clone a
public repository, but only authorized people can push changes
to it. So at this stage, the Git software (that we’re using through
RStudio) has no clue who you are. Git simply doesn’t know that
your the admin of the repository. You need to provide a way for
Git to know by logging in. And the way you login is through a
so-called ssh key.

Now if you thought that Git was confusing, I’m sorry to say
that what’s coming confuses students in general even more. Ok
so what’s a ssh key, and why does Git need it? An ssh key is
actually a misnomer, because we should really be talking about
a pair of keys. The idea is that you generated two files on the
computer that you need to access github.com from. One of these

57

3 Git

keys will be a public key, the other a private key. The private
key will be a file usually called id_rsa without any extension,
while the public key will be called the same, but with a .pub
extension, so id_rsa.pub (we will generate these two files using
RStudio in a bit). What you do is that you give the public key
to github.com, but you keep your private key on your machine.
Never, ever, upload or share your private key with anyone! It’s
called private for a reason. Once github.com has your public
key, each time you want to push to github.com, what happens is
that the public key is checked against your private key. If they
match, github.com knows that you are the person you claim to
be, and will allow you to push to the repository. If not you will
get the error from before.

So let’s now generate an ssh key pair. For this, go to Tools >
Global Options > Git/Svn, and then click on the Create RSA
Key...

58

3.5 Your first commit

Icon (1) shows you the path where the keys will be saved. This
is only useful if you have reasons to worry that your private

59

3 Git

key might be compromised, but without physical access to your
machine, an attacker would have a lot of trouble retrieving it (if
you keep your OS updated…). Finally click on Create:

Ok so now that you have generated these keys, let’s copy the
public key in our clipboard (because we need to paste the key
into github.com). You should be able to find this key from RStu-
dio. Go back to Tools > Global Options > Git/Svn, and
then click on View public key:

60

3.5 Your first commit

A new window will open showing you your public key. You can
now copy and paste it into github.com. For this, first go to your
profile, then Settings then SSH and GPG keys:

61

3 Git

62

3.5 Your first commit

Then, on the new screen click on New SSH key:

You can now add your key. Add a title, for example home for
your home computer, or work for your work laptop. Paste the
key from RStudio into the field (2), and then click on Add SSH
key:

63

3 Git

Ok, now that github.com has your public key, you can now push
your commits without any error. Go back to RStudio, to the
Git tab and click on Push:

64

3.5 Your first commit

A new window will open, this time showing you that the upload
went through:

You will need to add one public key per computer you use on
github.com. In the past, it was possible to push your commits
by providing a password each time. This was not secure enough

65

3 Git

however, so now the only way to to push commits is via ssh key
pairs. This concept is quite important: whatever service you
use, even if your company has a private Git server instance, you
will need to provide the public key to the central server. All
of this ssh key pair business IS NOT specific to github.com, so
make sure that you understand this well, because sooner rather
later, you will need to provide another public key, either because
you work from several computers or because the your first job
will have it’s own Git instance.

Ok so now you have an account on github.com, and know how to
set up a repo and push code to it. This is already quite useful,
because it allows you and future you to collaborate. What I
mean by this is that if in two or three months you need to go back
to some previous version of your code this is now possible. Let’s
try it out; change the file by adding some lines to it, commit your
changes and push again. Remember to use a commit message
that explain what you did. Once you’re done, go back to the
Git tab of Rstudio, and click on the History button (the icon
is a clock):

66

3.5 Your first commit

67

3 Git

As you can see from the picture above, clicking on History
shows every commit since the beginning of the repo. It also
shows you who pushed that particular commit, and when. For
now, you will only see your name. At (1) you see the lines I’ve
added. These are reflected, in green, in the History window.
If I had removed some lines, these would have been highlighted
in red in the same window. (4) shows you the only commit
history. There’s not much for now, but for projects that have
been ongoing for some time, this can get quite long! Finally, (5)
shows many interesting details. As before, who pushed the com-
mit, when, the commit message (under Subject), and finally
the SHA. This is a unique sequence of characters that identifies
the commit. If you select another commit, you will notice that
its SHA is different:

68

3.5 Your first commit

The SHA identifier (called a hash) is what we’re going to use to
revert to a previous state of the code base. But because this is a
bit advanced, there is no way of doing it from RStudio. You will
need to open a terminal and use Git from there. On Windows,
go to the folder of your project, right-click on some white space
and select Git Bash Here:

69

3 Git

A similar approach can be used for most Linux distributions
(but simply open a terminal, Git Bash is Windows only), and
you can apparently do something similar on macOS, but first
need to active the required service as explained here. You can
also simply open a terminal and navigate to the right folder
using cd.1

1Remember the introduction to this book, where I discussed everything

70

https://ladedu.com/how-to-open-a-terminal-window-at-any-folder-from-finder-in-macos/#How-to-Open-Mac-Terminal-from-Finder-in-the-Current-Folder

3.5 Your first commit

Once the terminal is opened, follow along but by adapting the
paths to your computer:

The first line changes the working directory to my
github repo on my computer↪

If you did not open the terminal inside the folder
as explained above, you need↪

adapt the path.

cd ~/six_to/example_repo # example_repo is the
folder where I cloned the repo↪

ls # List all the files in the directory

Listing the files inside the folder confirms that I’m in the right
spot. Something else you could do here is try out some git
commands, for example, git log:

git log

commit bd7daf0dafb12c0a19ba65f85b54834a02f7d150
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Mon Oct 17 14:38:59 2022 +0200
##
added some more lines
##
commit 95c26ed4dffd8fc40503f25ddc11af7de5c586c0
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Sat Oct 15 12:52:43 2022 +0200
##
Started project: first graph done
##

else that you should know…

71

3 Git

commit d9cff70ff71241ed8514cb65d97e669b0bbdf0f6
Author: Bruno Rodrigues
<brodriguesco@protonmail.com>
Date: Thu Oct 13 22:12:06 2022 +0200
##
Create README.md

git log returns the same stuff as the History button of the Git
pane inside RStudio. You see the commit hash, the name of the
author and when the commit was pushed. At this stage, we have
two options. We could “go back in time”, but just look around,
and then go back to where the repository stands currently. Or
we could essentially go back in time, and stay there, meaning,
we actually revert the code base back. Let’s try the first option,
let’s just take a look around at the code base at a particular
point in time. Copy the hash of a previous commit. With the
hash in your clipboard, use the git checkout command to go
back to this commit:

git checkout 95c26ed4dffd8f

You will see an output similar to this:

Note: switching to '95c26ed4dffd8f'.

You are in 'detached HEAD' state. You can look
around, make experimental changes
and commit them, and you can discard any commits you
make in this state without
impacting any branches by switching back to a
branch.

If you want to create a new branch to retain commits
you create, you may do so

72

3.5 Your first commit

(now or later) by using -c with the switch command.
Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

Turn off this advice by setting config variable
advice.detachedHead to false

HEAD is now at 95c26ed Started project: first graph
done

When checking out a commit, you are in detached HEAD state.
I won’t go into specifics, but what this means is that anything
you do here, won’t get saved, unless you specifically create a
new branch for it. A Git repository is composed of branches.
The branche you’re currently working on should be called main
or master. You can create new branches, and continue working
on these other branches, without affecting the master branch.
This allows to explore new ideas and experiment. If this turns
out to be fruitful, you can merge the experimental branch back
into master. We are not going to explore branches in this course,
so you’ll have to read about it on your own. But don’t worry,
branches are not that difficult to grok.

Take a look at the script file now, you will see that the lines you
added are now missing (the following line only works on Linux,
macOS, or inside a Git Bash terminal on Windows. cat is a
command line program that prints the contents of a text file to
a terminal):

73

3 Git

cat my_script.R

Once you’re done taking your tour, go back to the main (or
master) branch by running:

git checkout main

Ok, so how do we actually go back to a previous state? For this,
use git revert. But unlike git checkout, you don’t use the
hash of the commit you want to go back to. Instead, you need to
use the hash of the commit you want to “cancel”. For example,
imagine that my commit history looks like this:

commit bd7daf0dafb12c0a19ba65f85b54834a02f7d150
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Mon Oct 17 14:38:59 2022 +0200
##
added some more lines
##
commit 95c26ed4dffd8fc40503f25ddc11af7de5c586c0
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Sat Oct 15 12:52:43 2022 +0200
##
Started project: first graph done
##
commit d9cff70ff71241ed8514cb65d97e669b0bbdf0f6
Author: Bruno Rodrigues
<brodriguesco@protonmail.com>
Date: Thu Oct 13 22:12:06 2022 +0200
##
Create README.md

74

3.5 Your first commit

and let’s suppose I want to go back to commit 95c26ed4dffd8fc
(so my second commit). What I need to do is essentially
cancel commit bd7daf0dafb1, which comes after commit
95c26ed4dffd8fc (look at the dates: commit 95c26ed4dffd8fc
was made on October 15th and commit bd7daf0dafb1 was made
on October 17th). So I need to revert commit bd7daf0dafb1.
And that’s what we’re going to do:

git revert bd7daf0dafb1

This opens a text editor inside your terminal. Here you can add
a commit message or just keep the one that was added by default.
Let’s just keep it and quit the text editor. Unfortunately, this
is not very use friendly, but to quit the editor type :q. (The
editor that was opened is vim, a very powerful terminal editor,
but with a very steep learning curve.) Now you’re back inside
your terminal. Type git log and you will see a new commit
(that you have yet to push), which essentially cancels the commit
bd7daf0dafb1. You can now push this; for pushing this one,
let’s stay inside the terminal and use the following command:

git push origin main

origin main: origin here refers to the remote repository, so
to github.com, and main to the main branch.

Ok, we’re doing with the basics. Let’s now see how we can
contribute to some repository.

75

3 Git

3.6 Collaborating

Github (and similar services) allow you to collaborate with peo-
ple. There are two ways of achieving this. You can invite people
to work with you on the same project, by giving them writing
rights to the repository. This is what we are going to cover
in this section. The other way to collaborate is to let strangers
fork your repository (make a copy of it on github.com); they can
then work on their copy of the project independently from you.
If they want to submit patches to you, they can do so by doing
a so-called pull request. This workflow is quite different from
what we’ll see here and will be discussed in the next section.

So for this section you will need to form teams of at least 2
people. One of you will invite the other to collaborate by going
on github.com and then following the instructions in the picture
below:

76

3.6 Collaborating

77

3 Git

Type the username of your colleague to find him/her. In my
case I’m inviting my good friend David Solito:

David now essentially owns the repository as well! So he can
contribute to it, just like me. Now, let’s suppose that I continue
working on my end, and don’t coordinate with David. After
all, this is a post-covid world, so David might be working asyn-
chronously from home, and maybe he lives in an entire different
time zone completely! What’s important to realize, is that un-
like other ways of collaborating online (for example with an office
suite), you do not need to coordinate to collaborate with Git.

The file should look like this (yours might be different, it doesn’t
matter):

78

3.6 Collaborating

data(mtcars)

plot(mtcars$mpg, mtcars$hp)

I’m going to change it to this:

library(ggplot2)

data(mtcars)

ggplot(data = mtcars) +
geom_point(aes(y = hp, x = mpg))

100

200

300

10 15 20 25 30 35
mpg

hp

79

3 Git

The only thing I did was change from the base plotting func-
tions to {ggplot2}. Since you guys formed groups, please work
independently on the repository. Go crazy, change some lines,
add lines, remove lines, or add new files with new things. Just
work as normal, and commit and push your changes and see
what happens.

So let’s commit and push. You can do it from RStudio or from
the command line/Git Bash. This is what I’ll be doing from
now on, but feel free to continue using Git through RStudio:

git add . # This adds every file I've changed to
this next commit↪

git commit -am "Remade plot with ggplot2" # git
commit is the command to create the commit. The
-am flag means: 'a' stands for all, as in
'adding all files to the commit', so it's
actually redundant with the previous line, but I
use it out of habit, and 'm' specifies that we
want to add a message

↪

↪

↪

↪

↪

↪

git push origin main # This pushes the commit to the
repository on github.com↪

And this is what happens:

� git push origin main

To github.com:b-rodrigues/example_repo.git
! [rejected] main -> main (fetch first)

error: failed to push some refs to
'github.com:b-rodrigues/example_repo.git'
hint: Updates were rejected because the remote
contains work that you do

80

3.6 Collaborating

hint: not have locally. This is usually caused by
another repository pushing
hint: to the same ref. You may want to first
integrate the remote changes
hint: (e.g., 'git pull ...') before pushing
again.
hint: See the 'Note about fast-forwards' in 'git
push --help' for details.

What this all means is that David already pushed some changes
while I was working on the project as well. It says so very
cleary Updates were rejected because the remote contains work
that you do not have locally. Git tells us that we first need to
pull (download, if you will) the changes to our own computer to
integrate the changes, and then we can push again.

At this point, if we want, we can first go to github.com and see
the commit history there to see what David did. Go to your
repo, and click on the commit history icon:

81

3 Git

Doing so will list the commit history, as currently on

82

3.6 Collaborating

github.com:

83

3 Git

84

3.6 Collaborating

While I was working, David pushed 2 commits to the repository.
If you compare to your local history, using git log you will see
that these commits are not there, but instead, however many
commits you did (this will not be the case for all of you; whoever
of you pushed first will not see any difference between the local
and remote repository). Let’s see how it looks for me:

git log

commit d2ab909fc679a5661fc3c49c7ac549a2764c539e
(HEAD -> main)
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Tue Oct 18 09:28:10 2022 +0200

Remade plot with ggplot2

commit e66c68cc8b58831004d1c9433b2223503d718e1c
(origin/main, origin/HEAD)
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Mon Oct 17 17:33:33 2022 +0200

Revert "added some more lines"

This reverts commit
bd7daf0dafb12c0a19ba65f85b54834a02f7d150.

commit bd7daf0dafb12c0a19ba65f85b54834a02f7d150
Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Mon Oct 17 14:38:59 2022 +0200

added some more lines

commit 95c26ed4dffd8fc40503f25ddc11af7de5c586c0

85

3 Git

Author: Bruno Rodrigues <bruno@brodrigues.co>
Date: Sat Oct 15 12:52:43 2022 +0200

Started project: first graph done

commit d9cff70ff71241ed8514cb65d97e669b0bbdf0f6
Author: Bruno Rodrigues
<brodriguesco@protonmail.com>
Date: Thu Oct 13 22:12:06 2022 +0200

Create README.md

Yep, so none of David’s commits in sight. Let me do what
Git told me to do: let’s pull, or download, David’s commits
locally:

git pull --rebase

--rebase is a flag that keeps the commit history linear. There
are many different ways you can pull changes, but for our pur-
poses we can focus on --rebase. The other strategies are more
advanced, and you might want at some point to take a look at
them.

Once git pull --rebase is done, we get the following mes-
sage:

Auto-merging my_script.R
CONFLICT (content): Merge conflict in my_script.R
error: could not apply d2ab909... Remade plot with
ggplot2
hint: Resolve all conflicts manually, mark them as
resolved with

86

3.6 Collaborating

hint: "git add/rm <conflicted_files>", then run "git
rebase --continue".
hint: You can instead skip this commit: run "git
rebase --skip".
hint: To abort and get back to the state before "git
rebase", run "git rebase --abort".
Could not apply d2ab909... Remade plot with ggplot2

Once again, it is important to read what Git is telling us. There
is a merge conflict in the my_script.R file. Let’s open it, and
see what’s going on:

87

3 Git

We can see two things: the lines that David changed in (1), and
the lines I’ve added in (2). This happened because we changed
the same lines. Had I added lines instead of changing lines that
were already there, the merge would have happened automati-
cally, because there would not have been any conflict. In this
case however, Git does not know how to solve the issue: do we
keep David’s changes, or mine? Actually, we need to keep both.
I’ll keep my version of plot that uses {ggplot2}, but will also

88

3.6 Collaborating

keep what David added: he replaced the hp variable by cyl, and
added a linear regression as well. Since this seems sensible to
me, I will adapt the script in a way that gracefully merges both
contributions. So the file looks like this now:

We can now save, and continue following the hints from Git,
namely, adding the changed file to the next commit and then
use git rebase --continue:

git add my_script.R
git rebase --continue

89

3 Git

This will once again open the editor in your terminal. Simply
close it with :q. Let’s now push:

git push origin main

and we’re done! Let’s go back to github.com to see the commit
history. You can click on the hash to see the details of how the
file changed (you can do so from RStudio as well):

90

3.6 Collaborating

91

3 Git

In green, you see lines that were added, and in red, lines that
were removed. The lines where the linear model was defined are
not impacted, because David wrote them at the bottom of the
script, and I did not write anything there:

92

3.7 Branches

3.7 Branches

It is possible to create new branches and continue working on
these branches without impacting the code in the main branch.
This is useful if you want to experiment and explore new ideas.
The main or master branch can thus be used only to have code
that is ready to get shipped and distributed, while you can keep
working on a development branch. Let’s create a branch called
dev by using the git checkout command, and let’s also add
the -b flag to immediately switch to it:

� git checkout -b dev
Switched to a new branch 'dev'

It is possible to list the existing branches using git branch:

� git branch
* dev
main

As a little aside, if you’re working inside a terminal instead of
RStudio or another GUI application, it might be a good idea to
configure your terminal a little bit to do two things:

• change the branch you’re currently on
• show if some files got changed.

If you want to keep it simple, following this tutorial should be
enough. If you want something more fancy, use this other tu-
torial. I have not followed either, so I don’t know if they work,
but by the looks of it they should, and it should work on both
Linux and macOS I believe. If these don’t work, just google for

93

https://thucnc.medium.com/how-to-show-current-git-branch-with-colors-in-bash-prompt-380d05a24745
https://www.pragmaticlinux.com/2022/06/show-the-git-branch-in-your-bash-terminal-prompt/
https://www.pragmaticlinux.com/2022/06/show-the-git-branch-in-your-bash-terminal-prompt/

3 Git

“showing git branch in terminal”. This is entirely optional, and
you can use git branch to check which branch you’re currently
working on.

Ok so now that we are on the dev branch, let’s change the files a
little bit. Change some lines, then commit, then add some new
files and commit again. Then push to dev using:

� git push origin dev

This is what you should see on github.com after all is done:

94

3.7 Branches

95

3 Git

The video below shows you how you can switch between
branches and check the commit history of both:

Let’s suppose that we are happy with our experiments on the
dev branch, and are ready to add them to the master or main
branch. For this, checkout the main branch:

� git checkout main

You can now pull from dev. This will update your local main
branch with the changes from dev. Depending on what changes
you introduced, you might need to solve some conflicts. Try to
use the rebase strategy, and then solve the conflict. In my case,
the merge didn’t cause an issue:

� git pull origin dev
From github.com:b-rodrigues/example_repo
* branch dev -> FETCH_HEAD

Updating a9a417f..8b2f04f
Fast-forward
my_script.R | 8 +++-----
new_script.R | 1 +
2 files changed, 4 insertions(+), 5 deletions(-)
create mode 100644 new_script.R

Now if you run git status, this is what you’ll see:

� git status
On branch main
Your branch and 'origin/main' have diverged,
and have 2 and 2 different commits each,

respectively.↪

(use "git pull" to merge the remote branch into
yours)↪

96

3.7 Branches

Now, remember that I’ve pulled from dev into main. But git
status complains that the remote main and local main branches
have diverged. In these situations, git suggests to pull. This time
we’re pulling from main:

� git pull

This will likely result in the following message:

hint: You have divergent branches and need to
specify how to reconcile them.↪

hint: You can do so by running one of the following
commands sometime before↪

hint: your next pull:
hint:
hint: git config pull.rebase false # merge
hint: git config pull.rebase true # rebase
hint: git config pull.ff only # fast-forward

only↪

hint:
hint: You can replace "git config" with "git config

--global" to set a default↪

hint: preference for all repositories. You can also
pass --rebase, --no-rebase,↪

hint: or --ff-only on the command line to override
the configured default per↪

hint: invocation.
fatal: Need to specify how to reconcile divergent

branches.↪

97

3 Git

Because there are conflicts, I need to specify how the pulling
should be done. For this, I’m using once again the rebase flag:

� git pull --rebase
Auto-merging my_script.R
CONFLICT (content): Merge conflict in my_script.R
error: could not apply b240566... lm -> rf
hint: Resolve all conflicts manually, mark them as

resolved with↪

hint: "git add/rm <conflicted_files>", then run "git
rebase --continue".↪

hint: You can instead skip this commit: run "git
rebase --skip".↪

hint: To abort and get back to the state before "git
rebase", run "git rebase --abort".↪

Could not apply b240566... lm -> rf

So now I have conflicts. This is how the my_script.R file looks
like:

library(ggplot2)
library(randomForest)

data(mtcars)

ggplot(data = mtcars) +
geom_point(aes(y = cyl, x = mpg))

rf <- randomForest(hp ~ mpg, data = mtcars)

<<<<<<< HEAD
data(iris)

98

3.7 Branches

head(iris)
=======
plot(rf)
>>>>>>> b240566 (lm -> rf)

I need to solve the conflicts, and will do so by keeping the fol-
lowing lines:

library(ggplot2)
library(randomForest)

data(mtcars)

ggplot(data = mtcars) +
geom_point(aes(y = cyl, x = mpg))

rf <- randomForest(hp ~ mpg, data = mtcars)

plot(rf)

Let’s save the script, and call git rebase --continue. You
might see something like this:

� git rebase --continue
[detached HEAD 929f4ab] lm -> rf
1 file changed, 4 insertions(+), 9 deletions(-)

Auto-merging new_script.R
CONFLICT (add/add): Merge conflict in new_script.R
error: could not apply 8b2f04f... new file

There’s another conflict: this time, this is because of the commit
8b2f04f, where I added a new file. This one is easy to solve: I

99

3 Git

simply want to keep this file, so I simply keep track of it with
git add new_script.R and then, once again, call git rebase
--continue:

� git rebase --continue
[detached HEAD 20c04f8] new file
1 file changed, 4 insertions(+)

Successfully rebased and updated refs/heads/main.

I’m now done and can push to main:

� git push origin main
Enumerating objects: 9, done.
Counting objects: 100% (9/9), done.
Delta compression using up to 12 threads
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 660 bytes | 660.00

KiB/s, done.↪

Total 6 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with

1 local object.↪

To github.com:b-rodrigues/example_repo.git
83691c2..20c04f8 main -> main

There are other ways to achieve this. So let’s go back to dev
and continue working:

� git checkout dev

Add some lines to my_script.R and then commit and push:

100

3.7 Branches

� git add .
� git commit -am "more models"
[dev a0fa9fa] more models
1 file changed, 4 insertions(+)

� git push origin dev
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 12 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 329 bytes | 329.00

KiB/s, done.↪

Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with

2 local objects.↪

To github.com:b-rodrigues/example_repo.git
8b2f04f..a0fa9fa dev -> dev

Let’s suppose we’re done with adding features to dev. Let’s
checkout main:

� git checkout main

and now, let’s not pull from dev, but merge:

� git merge dev
Auto-merging my_script.R
CONFLICT (content): Merge conflict in my_script.R
Auto-merging new_script.R
CONFLICT (add/add): Merge conflict in new_script.R
Automatic merge failed; fix conflicts and then

commit the result.↪

101

3 Git

Some conflicts are in the file. Let’s take a look (because I’m in
the terminal, I use cat to print the file to the terminal, but you
can open it in RStudio):

� cat my_script.R
library(ggplot2)
library(randomForest)

data(mtcars)

ggplot(data = mtcars) +
geom_point(aes(y = cyl, x = mpg))

rf <- randomForest(hp ~ mpg, data = mtcars)
<<<<<<< HEAD

plot(rf)
=======

plot(rf)

rf2 <- randomForest(hp ~ mpg + am + cyl, data =
mtcars)↪

plot(rf2)
>>>>>>> dev

Looks like I somehow added some newline somewhere and this
caused the conflict. This is quite easy to solve, let’s make the
script look like this:

102

3.8 Contributing to someone else’s repository

library(ggplot2)
library(randomForest)

data(mtcars)

ggplot(data = mtcars) +
geom_point(aes(y = cyl, x = mpg))

rf <- randomForest(hp ~ mpg, data = mtcars)

plot(rf)

rf2 <- randomForest(hp ~ mpg + am + cyl, data =
mtcars)↪

plot(rf2)

We can now simply commit and push. Merging can be simpler
than pulling and rebasing, especially if you exclusively worked
on dev and master has not seen any activity.

3.8 Contributing to someone else’s
repository

It is also possible to contribute to someone else’s repository; by
this I mean someone who is not a colleague, and who did not
invite you to his or her repository. So this means that you do
not have writing rights to the repository and cannot push to
it.

103

3 Git

This is outside the scope of this course, but it is crucial that you
understand this as well. For this reason, I highly recommend
reading this link.

Ok, so this wraps up this chapter. Git is incredibly feature rich
and complex, but as already discussed, it is NOT optional to
know about Git in our trade. So now that you have some un-
derstanding of how it works, I suggest that you read the manual
here. W3Schools has a great tutorial as well.

104

https://opensource.com/article/19/7/create-pull-request-github
https://git-scm.com/book/tr/v2/Git-Basics-Getting-a-Git-Repository
https://www.w3schools.com/git/default.asp?remote=github

105

4 Package development

4 Package development

106

4.1 Introduction

What you’ll have learned by the end of the chapter: building
and documenting your own package.

4.1 Introduction

In this chapter we’re going to develop our own package. This
package will contain some functions that we will write to analyze
some data. Don’t focus too much on what these functions do
or don’t do, that’s not really important. What matters is that
you understand how to build your own package, and why that’s
useful.

R, as you know, has many many packages. When you type
something like

install.packages("dplyr")

This installs the {dplyr} package. The package gets down-
loaded from a repository called CRAN - The Comprehensive
R Archive Network (or from one of its mirrors). Developers
thus work on their packages and once they feel the package is
ready for production they submit it to CRAN. There are very
strict rules to respect to publish on CRAN; but if the developers
respects these rules, and the package does something non-trivial
(non-trivial is not really defined but the idea is that your pack-
age cannot simply be a collection of your own implementation
of common mathematical functions for example), it’ll get pub-
lished.

CRAN is actually quite a miracle; it works really well, and it’s
been working well for decades, since CRAN was founded in 1997.
Installing packages on R is rarely frustrating, and when it is, it

107

https://stat.ethz.ch/pipermail/r-announce/1997/000001.html

4 Package development

is rarely, if ever, CRAN’s fault (there are some packages that re-
quire your operating system to have certain libraries or programs
installed beforehand, and these can be frustrating to install, like
java or certain libraries used for geospatial statistics).

But while from the point of view from the user, CRAN is great,
there are sometimes some frictions between package developers
and CRAN maintainers. I’ll spare you the drama, but just know
that contributing to CRAN can be sometimes frustrating.

This does not concern us however, because we are going to learn
how to develop a package but we are not going to publish it on
CRAN. Instead, we will be using github.com as a replacement
for CRAN. This has the advantage that we do not have to be so
strict and disciplined when writing our package, and other users
can install the package almost just as easily from github.com,
with the following command:

remotes::install_github("github_username/some_package")

It is also possible to build the package and send it as a file
per email for example, and then install a local copy. This is
more cumbersome, that’s why we’re going to use github.com as
a repository.

4.2 Getting started

Let’s first start by opening RStudio, and start a new project:

Following these steps creates a folder in the specified path that
already contains some scaffolding for our package. This also
opens a new RStudio session with the default script hello.R
opened:

108

4.2 Getting started

109

4 Package development

We can remove this script, but do take note of the following
sentence:

You can learn more about package authoring with
RStudio at:
#
http://r-pkgs.had.co.nz/
#

If this course succeeded in turning you into an avid R program-
mer, you might want to contribute to the language by submitting
some nice packages one day. You could at that point refer to this
link to learn the many, many subtleties of package development.
But for our purposes, this chapter will suffice.

Ok, so now let’s take a look inside the folder you just created
and take a look at the package’s structure. You can do so easily
from within RStudio:

110

4.2 Getting started

111

4 Package development

But you can also navigate to the folder from inside a file explorer.
The folder that will matter to us the most for now is the R folder.
This folder will contain your scripts, which will contain your
package’s functions. Let’s start by adding a new script.

4.3 Adding functions

To add a new script, simply create a new script, and while we’re
at it, let’s add some code to it:

and that’s it! Well, this example is incredibly easy; there will
be more subtleties later on, but these are the basics: simply
write your script as usual. Now let’s load the package with
CTRL-SHIFT-L. Loading the package makes it available in your
current R session:

112

4.3 Adding functions

As you can see, the package is loaded, and RStudio’s autocom-
plete even suggest the function’s name already. So now that we
have already a function, let’s push our code to github.com (you
remember that we checked the box Create a git repository
when we started the project?). For this, let’s go back to
github.com and create a new repository. Give it the same name
as your package on your computer, just to avoid confusion.
Once the repo is created, you will see this familiar screen:

113

4 Package development

We will start from an existing repository, because our reposi-
tory already exists. So we can use the terminal to enter the
commands suggested here. We can also use the terminal from
RStudio:

114

4.3 Adding functions

The steps above are a way to link your local repository to
the remote repository living on github.com. Without these
initial steps, there is no way to link your package project to
github.com!

Let’s now write another function, which will depend on functions
from other packages.

4.3.1 Functions dependencies

In the same script, add the following code:

only_automatics <- function(dataset){
dataset |>
filter(am == 1)

}

This creates a function that takes a dataset as an argument, and
filters the am variable. This function is not great: it is not doc-
umented, so the user might not know that the dataset that is
meant here is the mtcars dataset (which is included with R by
default). So we will need to document this. Also, the variable
am is hardcoded, that’s not good either. What if the user wants
to filter another variable with another value? We will solve
these issues later on. But there is a worse problem here. The
filter() function that the developer intended to use here is
dplyr::filter(), so the one from the {dplyr} package. How-
ever, there are several functions called filter(). If you start
typing filter inside a fresh R session, this is what autocomplete
suggests:

115

4 Package development

So there’s a filter() function from the {stats} package
(which gets loaded automatically with every new R session),
and there’s a capital F Filter() function from the {base}
package (R is case sensitive, so filter() and Filter() are dif-
ferent functions). So how can the developer specify the correct
filter() function? Simply by using the following notation:
dplyr::filter() (which we have already encountered). So
let’s rewrite the function correctly:

only_automatics <- function(dataset){
dataset |>
dplyr::filter(am == 1)

}

Great, so now only_automatics() at least knows which filter
function to use, but this function could be improved a lot more.
In general, what you want is to have a function that is general
enough that it could work with any variable (if the dataset is
supposed to be fixed), or that could work with any combination
of dataset and variable. Let’s make our function a bit more
general, by making it work on any variable from any dataset:

my_filter <- function(dataset, condition){
dataset |>

116

4.3 Adding functions

dplyr::filter(condition)
}

I renamed the function to my_filter() because now this func-
tion can work on any dataset and with any predicate condition
(of course this function is not really useful, since it’s only a wrap-
per around filter(). But that’s not important). Let’s save the
script and reload the package with CRTL-SHIFT-L and try out
the function:

my_filter(mtcars, am == 1)

You will get this output:

Error in `dplyr::filter()` at
myPackage/R/functions.R:6:4:
! Problem while computing `..1 = condition`.
Caused by error in `mask$eval_all_filter()`:
! object 'am' not found
Run `rlang::last_error()` to see where the error
occurred.

so what’s going on? R complains that it cannot find am. What
is wrong with our function? After all, if I call the following, it
works:

mtcars |>
dplyr::filter(am == 1)

mpg cyl disp hp drat wt qsec
vs am gear carb

Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
0 1 4 4

117

4 Package development

Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47
1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52
1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90
1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70
0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90
1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50
0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50
0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60
0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60
1 1 4 2

So what gives? What’s going on here, is that R doesn’t know
that it has look for am inside the mtcars dataset. R is looking for
a variable called am in the global environment, which does not
exist. dplyr::filter() is programmed in a way that tells R to
look for am inside mtcars and not in the global environment (or
whatever parent environment the function gets called from). We
need to program our function in the same way. Remember in
chapter 3, where we learned about functions that take columns
of data frames as arguments? This is exactly the same situta-

118

4.3 Adding functions

tion here. So, let’s simply enclose references to columns of data
frames inside {{}}, like so:

my_filter <- function(dataset, condition){
dataset |>
dplyr::filter({{condition}})

}

Now, R knows where to look. So reload the package with
CTRL-SHIFT-L and try again:

my_filter(mtcars, am == 1)

mpg cyl disp hp drat wt qsec
vs am gear carb

Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46
0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02
0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61
1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47
1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52
1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90
1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90
1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70
0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90
1 1 5 2

119

4 Package development

Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50
0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50
0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60
0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60
1 1 4 2

And it’s working!

{{}} is not a feature available in a base installation of R, but
is provided by packages from the tidyverse (like {dplyr},
{tidyr}, etc). If you write functions that depend on {dplyr}
functions like filter(), select() etc, you’ll have to know to
keep using {{}}.

Let’s now write a more useful function. Remember the datasets
about unemployment in Luxembourg? I’m thinking about the
ones here, unemp_2013.csv, unemp_2014.csv, etc.

Let’s write a function that does some basic transformations on
these files:

clean_unemp <- function(unemp_data, level,
col_of_interest){↪

unemp_data |>
janitor::clean_names() |>
dplyr::filter({{level}}) |>
dplyr::select(year, commune,
{{col_of_interest}})↪

}

This function does 3 things:

120

https://rap4mads.eu/02-intro_R.html#reading-in-data-with-r

4.3 Adding functions

• using janitor::clean_names(), it cleans the column
names;

• it filters on a user supplied level. This is because the csv
file contains three “regional” levels so to speak: the whole
country: first row, where commune equals Grand-Duché
de Luxembourg, canton level: where commune contains
the string Canton and the last level: the actual communes.
Welcome to the real world, where data is dirty and does
not always make sense.

• it selects the columns that interest us (with year and com-
mune hardcoded, because we always want those)

So save the script, and reload your package using CTRL-SHIFT-L,
and try with the following lines:

unemp_2013 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2013.csv")↪

Rows: 118 Columns: 8
-- Column specification
--
Delimiter: ","
chr (1): Commune
dbl (7): Total employed population, of which:
Wage-earners, of which: Non-wa...

i Use `spec()` to retrieve the full column
specification for this data.
i Specify the column types or set `show_col_types =
FALSE` to quiet this message.

clean_unemp(unemp_2013,
grepl("Grand-D.*", commune),
active_population)

121

4 Package development

A tibble: 1 x 3
year commune active_population

<dbl> <chr> <dbl>
1 2013 Grand-Duche de Luxembourg 242694

This selects the columns for the whole country. Let’s try for
cantons:

clean_unemp(unemp_2013,
grepl("Canton", commune),
active_population)

A tibble: 12 x 3
year commune active_population

<dbl> <chr> <dbl>
1 2013 Canton Capellen 18873
2 2013 Canton Esch 73063
3 2013 Canton Luxembourg 68368
4 2013 Canton Mersch 13774
5 2013 Canton Clervaux 7936
6 2013 Canton Diekirch 14056
7 2013 Canton Redange 7902
8 2013 Canton Vianden 2280
9 2013 Canton Wiltz 6670

10 2013 Canton Echternach 7967
11 2013 Canton Grevenmacher 12254
12 2013 Canton Remich 9551

And to select for communes, we need to not select cantons nor
the whole country:

clean_unemp(unemp_2013,
!grepl("(Canton|Grand-D.*)", commune),
active_population)

122

4.4 Documentation

A tibble: 105 x 3
year commune active_population

<dbl> <chr> <dbl>
1 2013 Dippach 1817
2 2013 Garnich 869
3 2013 Hobscheid 1505
4 2013 Kaerjeng 4355
5 2013 Kehlen 2244
6 2013 Koerich 1016
7 2013 Kopstal 1284
8 2013 Mamer 3209
9 2013 Septfontaines 399

10 2013 Steinfort 2175
i 95 more rows

This seems to be working well (in one of the next sections we will
learn how to systematize these tests, instead of running them by
hand each time we change the function). Before continuing, let’s
commit and push our changes.

4.4 Documentation

It is time to start documenting our functions, and then our pack-
age. Documentation in R is not just about telling users how to
use the package and its functions, but it also serves a functional
role. There are several files that must be edited to completely
document a package, and these files also help define the depen-
dencies of the package. Let’s start with the simplest thing we
can do, which is documenting functions.

123

4 Package development

4.4.1 Documenting functions

As you’ll know, comments in R start with #. Documenting
functions consists in commenting them with a special kind of
comments that start with #'. Let’s try on our clean_unemp()
function:

#' Easily filter unemployment data for Luxembourg
#' @param unemp_data A data frame containing

unemployment data for Luxembourg.↪

#' @param level A predicate condition indicating the
regional level of interest. See details for
more.

↪

↪

#' @param col_of_interest A column of the
`unemp_data` data frame that you wish to select.↪

#' @importFrom janitor clean_names
#' @importFrom dplyr filter select
#' @export
#' @return A data frame
#' @details
#' This function allows the user to create a data

frame for several regional levels. The first
level

↪

↪

#' is the complete country. The second level are
cantons, and the third level are neither cantons↪

#' nor the whole country, so the communes.
Individual communes can be selected as well.↪

#' `level` must be predicate condition passed down
to dplyr::filter. See the examples below↪

#' for its usage.
#' @examples
#' # Filter on cantons
#' clean_unemp(unemp_2013,

124

4.4 Documentation

#' grepl("Canton", commune),
#' active_population)
#' # Filter on a specific commune
#' clean_unemp(unemp_2013,
#' grepl("Kayl", commune),
#' active_population)
clean_unemp <- function(unemp_data, level,

col_of_interest){↪

unemp_data |>
janitor::clean_names() |>
dplyr::filter({{level}}) |>
dplyr::select(year, commune,
{{col_of_interest}})↪

}

The special comments that start with #' will be compiled into
a nice looking document that users can then read. You can
add sections to the documentation by using keywords that start
with @. The example above shows essentially everything you
need to know to properly document your functions. An im-
portant keyword, that will not appear in the documentation
itself, is @importFrom. This will be useful later, when we doc-
ument the package, as it helps define the dependencies of your
package. For now, let’s simply remember to write this. The
other thing that might not be obvious is the @export line. This
simply tells R that this function should be public, available
to the users. If you need to define private functions, you can
omit this keyword and the function won’t be visible to users
(this is only partially true however, users can always reach deep
into the package and use private functions by using :::, as in
package:::my_private_function()).

125

4 Package development

You can now save the script and press CRTL-SHIFT-D. This will
generate the help file for your function:

126

4.4 Documentation

127

4 Package development

Now, writing ?clean_unemp in the console shows the documen-
tation for clean_unemp:

Now, let’s document the package.

4.4.2 Documenting the package

4.4.2.1 The NAMESPACE file

There are several files you need to edit to properly document
your package. Some are optional like vignettes, and some are
not optional, like the DESCRIPTION and the NAMESPACE.
Let’s start with the NAMESPACE. This file gets generated au-
tomatically, but sometimes it can happen that it gets stuck in
a state where it doesn’t get generated anymore. In these cases,
you should simply delete it, and then document your package
again:

As you can see from the video, the NAMESPACE defines some
interesting stuff. First, it says which of our functions are ex-
ported, and should be available to the users. Then, it defines
the imports. This is possible because of the @importFrom key-
words from before. What we can now do, is go back to our
function and remove all the references to the packages and sim-
ply use the functions, meaning that we can use filter(blabla)
instead of dplyr::filter(). But in my opinion, it is best to
keep them the script as it is. There already there, and by having
them there, even if they’re redundant with the NAMESPACE,
someone reading the source code will know immediately where
the functions come from. But if you want, you can remove the
references to the packages, it’ll work.

128

4.4 Documentation

4.4.2.2 The DESCRIPTION file

The DESCRIPTION file requires more manual work. Let’s take
a look at the file as it stands:

Package: myPackage
Type: Package
Title: What the Package Does (Title Case)
Version: 0.1.0
Author: Who wrote it
Maintainer: The package maintainer
<yourself@somewhere.net>
Description: More about what it does (maybe more
than one line)

Use four spaces when indenting paragraphs within
the Description.

License: What license is it under?
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.1

Let’s change this to:

Package: myPackage
Type: Package
Title: Clean Lux Unemployment Data
Version: 0.1.0
Author: Bruno Rodrigues
Maintainer: Bruno Rodrigues
Description: This package allows users to easily get
unemployent data for Luxembourg

from raw csv files
License: GPL (>=3)
Encoding: UTF-8

129

4 Package development

LazyData: true
RoxygenNote: 7.2.1

All of this is not really important if you’re not releasing your
package on CRAN, but still important to think about. If it’s a
package you’re keeping private to your company, none of it mat-
ters much, but if it’s on github.com, you might want to still fill
out these fields. What could be important is the license you’re
releasing the package under (again, only important if you release
on CRAN or keep it on github.com). What’s really important
in this file, is what’s missing. We are going to add some more
lines to this file, which are quite important:

Package: myPackage
Type: Package
Title: Clean Lux Unemployment Data
Version: 0.1.0
Author: Bruno Rodrigues
Maintainer: Bruno Rodrigues
Description: This package allows users to easily get
unemployent data for Luxembourg

from raw csv files
License: GPL (>=3)
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.1
RemoteType: github
Depends:

R (>= 4.1),
Imports:

dplyr,
janitor

Suggests:
knitr,

130

4.4 Documentation

rmarkdown,
testthat

We added three fields:

• RemoteType: we need to specify here that this package
lives on github.com. This will become important for re-
producibility purposes.

• Depends: we can define hard dependencies here. Because
I’m using the base pipe |> in my examples, my package
needs at least R version 4.1.

• Imports: these is where we list packages that our package
needs in order to run. If these packages are not available,
they will be installed when users install our package.

• Suggests: these packages are not required to run, but can
unlock further capabilities. This is also where we can list
packages that are required to build vignettes (which we’ll
discover shortly), or for unit testing.

There is another field we could add, Remotes, which is where we
could define the usage of a package only released on github.com.
To know more about this, read this section of R packages.

4.4.2.3 Vignettes

Vignettes are long form documentation that explain some of
the use-cases of your package. They are written in the RMark-
down format, which we will learn about in chapter 8. To see
an example of a vignette, you can take a look at this vignette
titled A non-mathematician’s introduction to monads from my
{chronicler} package, or you could also type:

131

https://r-pkgs.org/dependencies.html#nonstandard-dependencies
https://r-pkgs.org/
https://b-rodrigues.github.io/chronicler/articles/advanced-topics.html

4 Package development

vignette(package = "dplyr")

to see the list of available vignettes for the {dplyr} package,
and then write:

vignette("programming", "dplyr")

to open the vignette locally.

4.4.2.4 Package’s website

In the previous section I’ve linked to a vignette from my
{chronicler} package. The website was automatically gener-
ated using the pkgdown package. We are not going to discuss
how it works in detail here, but you should know this exists,
and is actually quite easy to use.

4.4.3 Checking your package

Before sharing your package with the world, you might want
to run devtools::check() to make sure everything is alright.
devtools::check() will make sure that you didn’t forget some-
thing crucial, like declaring a dependency in the DESCRIPTION
file for example. The goal is to see something like this at the
end of devtools::check():

0 errors � | 0 warnings � | 3 notes �

If you want to release your package on CRAN, it’s a good idea
to address the notes as well, but what you must absolutely deal
with are errors and warnings, even if you’re keeping this package
for yourself.

132

https://b-rodrigues.github.io/chronicler/
https://pkgdown.r-lib.org/

4.4 Documentation

4.4.4 Installing your package

Once you’re done working on your package, you can install it
with CRTL-SHIFT-B. This way you can start using your package
from any R session. People that want to install your package can
use devtools::install_github() to install it from github.com.
You might want to communicate a specific commit hash to your
users, so they install a fixed version of your package, and not
the latest development version. For example, let’s suppose that I
have been working on my package, but would prefer my potential
users to install the package as it stood at the commit with the
hash "e9d9129de3047c1ecce26d09dff429ec078d4dae". I can
write this in the README of the package:

To install the package, please use the following
line

devtools::install_github("b-rodrigues/myPackage",
ref = "e9d9129de3047c1ecce26d09dff429ec078d4dae")

This will install the {myPackage} package as it looked like at
this particular commit. You could also create a branch called
release for example, and direct users to install from this
branch:

To install the package, please use the following
line

devtools::install_github("b-rodrigues/myPackage",
ref = "release")

But for this, you need to create a release branch, which will only
contain release-ready code.

133

4 Package development

4.5 Further reading

• https://r-pkgs.org/

134

135

5 Unit tests

5 Unit tests

136

5.1 Introduction

What you’ll have learned by the end of the chapter: what unit
tests are, how to write them, and how to test your package
thoroughly.

5.1 Introduction

It might not have seemed like it, but developing our own package
was actually the first step in writing reproducible code. Pack-
aged code is easy to share, and much easier to run than code
that lives inside scripts. When you share code, be it with fu-
ture you or others, you have a responsibility to ship high quality
code. Unit tests are one way to ensure that your code works as
intented, but it is not a panacea. But if you write short, well-
documented functions, and you package them, and test them
thoroughly, you are on the right track for success.

But what are unit tests? Unit tests are pieces of code that test
other pieces of code (called units in this context). It turns out
that functions are units of code, and that makes testing them
quite easy. I hope that you are starting to see the pieces coming
all together: I introduced you to functional programming and
insisted that you write your code as a sequence of functions calls,
because it makes it easier to package and document everything.
And now that your code lives inside a package, as a series of
functions, it will be very easy to test these functions (or units
of code).

5.2 Testing your package

To make sure that each one of us starts with the exact same pack-
age and code, you will first of all fork the following repository

137

5 Unit tests

that you can find here.

138

https://github.com/b-rodrigues/unemp_lux_r4m

5.2 Testing your package

139

5 Unit tests

Forking the repository will add a copy of the repository to your
github account. You can now clone your fork of the repo (make
sure you clone using the ssh link!) and start working!

Because our code is packaged, starting to write unit tests will be
very easy. For this, open RStudio and make sure your package’s
project is opened:

140

5.2 Testing your package

In order to set up the required files and folders for unit testing,

141

5 Unit tests

run the following line in the R console:

usethis::use_test("clean_unemp")

You should see a folder called tests appear inside the package.
Inside tests, there is another folder called testthat, and inside
this folder you should find a file called test-clean_unemp.R.
This file should contain an example:

test_that("multiplication works", {
expect_equal(2 * 2, 4)

})

This is quite self-explanatory; test_that() is the function that
we are going to use to write tests. It takes a string as an argu-
ment, and a test. For the string write an explanatory name. This
will make it easier to find the test if it fails. expect_equal()
is a function that tests the equality between its arguments. On
one side we have 2 * 2, and on the other, 4. All our tests will
look somewhat like this. There are many expect_ functions,
that allow you to test for many conditions. You can take a look
at {testthat}’s function reference for a complete list.

So, what should we test? Well, here are several ideas:

• Is the function returning an expected value for a given
input?

• Can the function deal with all kinds of input? What hap-
pens if an unexpected input is provided?

• Is the function failing as expected for certain inputs?
• Is the function dealing with corner cases as intended?

Let’s try to write some tests for our clean_unemp() function
now, and start to consider each of these questions.

142

https://testthat.r-lib.org/reference/index.html

5.2 Testing your package

5.2.1 Is the function returning an expected value
for a given input?

Let’s start by testing if our function actually returns data for
the Grand-Duchy of Luxembourg if the user provides a correct
regular expression. Add these lines to the script (and remove
the example test while you’re at it):

unemp_2013 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2013.csv")↪

test_that("selecting the grand duchy works", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Grand-D.*", commune),
active_population)

expected_value <- tibble::as_tibble(
list("year" = 2013,
"commune" = "Grand-Duche de Luxembourg",
"active_population" = 242694))

expect_equal(returned_value, expected_value)
})

So what’s going on here? First, I need to get the data. I load
the data outside of the test, so it’ll be available to every test
afterwards as well. Then, inside the test, I need to define two
more variables: the actual value returned by the function, and
the value that we expect. I need to create this value by hand, and
I do so using the tibble::as_tibble() function. This function
takes a list as an argument and converts it to a tibble. I did not

143

5 Unit tests

explain what tibbles are yet: tibbles are basically the same as
a data frame, but have a nicer print method, and other niceties.
In practice, you don’t need to think about tibbles too much, but
here you need to be careful: clean_unemp() returns a tibble,
because that’s what {dplyr} functions return by default. So if
in your test you compare a tibble to a data.frame, your test will
fail, because their classes are not equal. So I need to define my
expected value as a tibble for the test to pass.

You can now save the script, and press CTRL-SHIFT-T to run
the test. The test should pass, if not, there’s either something
wrong with your function, with the inputs you provided to it,
or with the expected value. You can keep adding tests to this
script, to cover every possible use case:

test_that("selecting cantons works", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Canton", commune),
active_population)

expected_value <-
readr::read_csv("test_data_cantons.csv")↪

expect_equal(returned_value, expected_value)
})

In the test above, I cannot write the expected value by hand. So
what I did instead was run my function in a terminal, and save
the output in a csv file. I used the following code for this:

144

5.2 Testing your package

clean_unemp(unemp_2013,
grepl("Canton", commune),
active_population) %>%

readr::write_csv("tests/testthat/test_data_cantons.csv")↪

I inspected this output to make sure everything was correct. I
can now keep this csv file and test my function against it. Should
my function fail when tested against it, I know that something
is wrong. We can do the same for communes. First, save the
“ground truth” in a csv file:

clean_unemp(unemp_2013,
!grepl("(Canton|Grand-D.*)", commune),
active_population) %>%

readr::write_csv("tests/testthat/test_data_communes.csv")↪

Then, we can use this csv file in our tests:

test_that("selecting communes works", {

returned_value <- clean_unemp(
unemp_2013,
!grepl("(Canton|Grand-D.*)",

commune),↪

active_population)

expected_value <-
readr::read_csv("test_data_communes.csv")↪

145

5 Unit tests

expect_equal(returned_value, expected_value)
})

We could even add a test for a specific commune:

test_that("selecting one commune works", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Kayl", commune),
active_population)

expected_value <- tibble::as_tibble(
list("year" = 2013,

"commune" = "Kayl",
↪

"active_population"
= 3863))↪

expect_equal(returned_value, expected_value)
})

So your final script would look something like this:

unemp_2013 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2013.csv",
show_col_types = FALSE)

↪

↪

test_that("selecting the grand duchy works", {

returned_value <- clean_unemp(

146

5.2 Testing your package

unemp_2013,
grepl("Grand-D.*", commune),
active_population)

expected_value <- tibble::as_tibble(
list("year" = 2013,

"commune" =
"Grand-Duche
de
Luxembourg",

↪

↪

↪

"active_population"
= 242694))

↪

↪

expect_equal(returned_value, expected_value)

})

test_that("selecting cantons work", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Canton", commune),
active_population)

expected_value <-
readr::read_csv("test_data_cantons.csv",
show_col_types = FALSE)

↪

↪

expect_equal(returned_value, expected_value)

})

147

5 Unit tests

test_that("selecting communes works", {

returned_value <- clean_unemp(
unemp_2013,
!grepl("(Canton|Grand-D.*)", commune),
active_population)

expected_value <-
readr::read_csv("test_data_communes.csv",
show_col_types = FALSE)

↪

↪

expect_equal(returned_value, expected_value)

})

test_that("selecting one commune works", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Kayl", commune),
active_population)

expected_value <- tibble::as_tibble(
list("year" = 2013,

"commune" =
"Kayl",↪

"active_population"
= 3863))

↪

↪

expect_equal(returned_value, expected_value)

})

148

5.2 Testing your package

5.2.2 Can the function deal with all kinds of
input?

What should happen if your function gets an unexpected input?
Let’s write a unit test and then see if it passes. For example,
what if the user enters a commune name that is not in Luxem-
bourg? We expect the data frame to be empty, so let’s write a
test for that

test_that("wrong commune name", {

returned_value <- clean_unemp(
unemp_2013,
grepl("Paris", commune),
active_population)

expected_value <- tibble::as_tibble(
list("year" = numeric(0),
"commune" = character(0),
"active_population" = numeric(0)))

expect_equal(returned_value, expected_value)

})

This test reveals something interesting: your function returns
an empty data frame, but the user might not understand what’s
wrong. Maybe we could add a message to inform the user? We
could write something like:

149

5 Unit tests

clean_unemp <- function(unemp_data, level,
col_of_interest){↪

result <- unemp_data |>
janitor::clean_names() |>
dplyr::filter({{level}}) |>
dplyr::select(year, commune,
{{col_of_interest}})↪

if(nrow(result) == 0) {
warning("The returned data frame is empty. This

is likely because the `level` argument
supplied does not match any rows in the
original data.")

↪

↪

↪

}
result

}

Replace the clean_unemp() function from your package with
this one, and rerun the tests. The test should still pass, but
a warning will be shown. We can test for this as well; is the
warning thrown? Let’s write the required test for it:

test_that("wrong commune name: warning is thrown", {

expect_warning({
clean_unemp(
unemp_2013,
grepl("Paris", commune),
active_population)

}, "This is likely")

150

5.3 Back to developing again

})

expect_warning() needs the expression that should raise the
warning, and a regular expression. I’ve used the string “This
is likely”, which appears in the warning. This is to make sure
that the correct warning is raised. Should another warning be
thrown, the test will fail, and I’ll know that something’s wrong
(try to change the regular expression and rerun the test, you see
that it’ll fail).

5.3 Back to developing again

Now might be a good time to stop writing tests and think a
little bit. While writing these tests, and filling the shoes of your
users, you might have realized that your function might not be
that great. We are asking users to enter a regular expression to
filter data, which is really not great nor user-friendly. And this
is because the data we’re dealing with is actually not clean, be-
cause the same column mixes three different regional levels. For
example, what if the users wants to take a look at the commune
“Luxembourg”?

clean_unemp(
unemp_2013,
grepl("Luxembourg", commune),
active_population)

A tibble: 3 × 3
year commune active_population

<dbl> <chr> <dbl>

151

5 Unit tests

2013 Grand-Duche de Luxembourg 242694
2013 Canton Luxembourg 68368
2013 Luxembourg 43368

So the user gets back three rows; that’s because there’s the coun-
try, the canton and the commune of Luxembourg. Of course the
user can now filter again to just get the commune. But this is
not a good interface.

What we should do instead is clean the input data. And while
we’re at it, we could also provide the data directly inside the
package. This way users get the data “for free” once they install
the package. Let’s do exactly that. To package data, we first
need to create the data-raw folder. This can be done with the
following call:

usethis::use_data_raw()

There’s a script called DATASET.R inside the data-raw folder.
This is the script that we should edit to clean the data. Let’s
write the following lines in it:

code to prepare `DATASET` dataset goes here

unemp_2013 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2013.csv")↪

unemp_2014 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2014.csv")↪

unemp_2015 <-
readr::read_csv("https://raw.githubusercontent.com/b-rodrigues/modern_R/master/datasets/unemployment/unemp_2015.csv")↪

library(dplyr)

152

5.3 Back to developing again

clean_data <- function(x){
x %>%
janitor::clean_names() %>%
mutate(level = case_when(

grepl("Grand-D.*", commune) ~
"Country",↪

grepl("Canton", commune) ~ "Canton",
!grepl("(Canton|Grand-D.*)", commune) ~

"Commune"↪

),
commune = ifelse(grepl("Canton",

commune),↪

stringr::str_remove_all(commune, "Canton "),↪

commune),
commune = ifelse(grepl("Grand-D.*",

commune),↪

stringr::str_remove_all(commune, "Grand-Duche de
"),

↪

↪

commune),
) %>%

select(year,
place_name = commune,
level,
everything())

}

my_datasets <- list(
unemp_2013,
unemp_2014,
unemp_2015

153

5 Unit tests

)

unemp <- purrr::map_dfr(my_datasets, clean_data)

usethis::use_data(unemp, overwrite = TRUE)

Running this code creates a dataset called unemp, which users
of your package will be able to load using data("unemp") (af-
ter having loaded your package). The now contains a new col-
umn called level which will make filtering much easier. After
usethis::use_data() is done, we can read following message
in the R console:

� Saving 'unemp' to 'data/unemp.rda'
• Document your data (see
'https://r-pkgs.org/data.html')

We are invited to document our data. To do so, create and edit
a file called data.R in the R directory:

#' Unemployement in Luxembourg data
#'
#' A tidy dataset of unemployment data in

Luxembourg.↪

#'
#' @format ## `who`
#' A data frame with 7,240 rows and 60 columns:
#' \describe{
#' \item{year}{Year}
#' \item{place_name}{Name of commune, canton or

country}↪

#' \item{level}{Country, Canton, or Commune}
#' \item{total_employed_population}{Total employed

population living in `place_name`}↪

154

5.3 Back to developing again

#' \item{of_which_wage_earners}{... of which are
wage earners living in `place_name`}↪

#' \item{of_which_non_wage_earners}{... of which
are non-wage earners living in `place_name`}↪

#' \item{unemployed}{Total unemployed population
living in `place_name`}↪

#' \item{active_population}{Total active
population living in `place_name`}↪

#'
\item{unemployement_rate_in_percent}{Unemployement
rate in `place_name`}

↪

↪

#' ...
#' }
#' @source <https://is.gd/e6wKRk>
"unemp"

You can now rebuild the document using CTRL-SHIFT-D and
reload the package using CRTL-SHIFT-L. You should now be
able to load the data into your session using data("unemp").

We can now change our function to accommodate this new data
format. Let’s edit our function like this:

#' Easily filter unemployment data for Luxembourg
#' @param unemp_data A data frame containing

unemployment data for Luxembourg.↪

#' @param year_of_interest Optional: The year that
should be kept. Leave empty to select every
year.

↪

↪

#' @param place_name_of_interest Optional: The name
of the place of interest: leave empty to select
every place in `level_of_interest`.

↪

↪

#' @param level_of_interest Optional: The level of
interest: one of `Country`, `Canton`, `Commune`.
Leave empty to select every level with the same
place name.

↪

↪

↪

155

5 Unit tests

#' @param col_of_interest A column of the `unemp`
data frame that you wish to select.↪

#' @importFrom janitor clean_names
#' @importFrom dplyr filter select
#' @importFrom rlang quo `!!`
#' @return A data frame
#' @export
#' @details
#' Users can filter data on two variables: the name

of the place of interest, and the level of
interest.

↪

↪

#' By leaving the argument `place_name_of_interest`
empty↪

#' @examples
#' # Filter on cantons
#' clean_unemp(unemp,
#' level_of_interest = "Canton",
#' col_of_interest = active_population)
#' # Filter on a specific commune
#' clean_unemp(unemp,
#' place_name_of_interest =

"Luxembourg",↪

#' level_of_interest = "Commune",
#' col_of_interest = active_population)
#' # Filter on every level called Luxembourg
#' clean_unemp(unemp,
#' place_name_of_interest =

"Luxembourg",↪

#' col_of_interest = active_population)
clean_unemp <- function(unemp_data,

year_of_interest = NULL,
place_name_of_interest =

NULL,↪

156

5.3 Back to developing again

level_of_interest = NULL,
col_of_interest){

if(is.null(year_of_interest)){

year_of_interest <- quo(year)

}

if(is.null(place_name_of_interest)){

place_name_of_interest <- quo(place_name)

}

if(is.null(level_of_interest)){

level_of_interest <- quo(level)

}

result <- unemp_data |>
janitor::clean_names() |>
dplyr::filter(year %in% !!year_of_interest,

place_name %in%
!!place_name_of_interest,↪

level %in% !!level_of_interest) |>
dplyr::select(year, place_name, level,
{{col_of_interest}})↪

if(nrow(result) == 0) {
warning("The returned data frame is empty. This

is likely because the
`place_name_of_interest` or
`level_of_interest` argument supplied does
not match any rows in the original data.")

↪

↪

↪

↪

157

5 Unit tests

}
result

}

There’s a lot more going on now: if you don’t get everything
that’s going on in this function, don’t worry, it is not that im-
portant for what follows. But do try to understand what’s hap-
pening, especially the part about the optional arguments.

5.4 And back to testing

Running our tests now will obviously fail:

� devtools::test('.')

� Testing myPackage
� | F W S OK | Context
� | 6 0 | clean_unemp [0.3s]
��
Error (test-clean_unemp.R:5:3): selecting the grand
duchy works
Error in `is.factor(x)`: object 'commune' not found
Backtrace:
1. myPackage::clean_unemp(...)

at test-clean_unemp.R:5:2
2. base::grepl("Grand-D.*", commune)

at myPackage/R/functions.R:29:2
3. base::is.factor(x)

Error (test-clean_unemp.R:21:3): selecting cantons
work

158

5.4 And back to testing

Error in `is.factor(x)`: object 'commune' not found
Backtrace:
1. myPackage::clean_unemp(...)

at test-clean_unemp.R:21:2
2. base::grepl("Canton", commune)

at myPackage/R/functions.R:29:2
3. base::is.factor(x)

Error (test-clean_unemp.R:34:3): selecting communes
works
Error in `is.factor(x)`: object 'commune' not found
Backtrace:
1. myPackage::clean_unemp(...)

at test-clean_unemp.R:34:2
2. base::grepl("(Canton|Grand-D.*)", commune)

at myPackage/R/functions.R:29:2
3. base::is.factor(x)

Error (test-clean_unemp.R:47:3): selecting one
commune works
Error in `is.factor(x)`: object 'commune' not found
Backtrace:
1. myPackage::clean_unemp(unemp_2013, grepl("Kayl",
commune), active_population)

at test-clean_unemp.R:47:2
2. base::grepl("Kayl", commune)

at myPackage/R/functions.R:29:2
3. base::is.factor(x)

Error (test-clean_unemp.R:63:3): wrong commune name
Error in `is.factor(x)`: object 'commune' not found
Backtrace:

159

5 Unit tests

1. myPackage::clean_unemp(unemp_2013,
grepl("Paris", commune), active_population)

at test-clean_unemp.R:63:2
2. base::grepl("Paris", commune)

at myPackage/R/functions.R:29:2
3. base::is.factor(x)

Error (test-clean_unemp.R:80:3): wrong commune name:
warning is thrown
Error in `is.factor(x)`: object 'commune' not found
Backtrace:
1. testthat::expect_warning(...)

at test-clean_unemp.R:80:2
8. base::grepl("Paris", commune)

at myPackage/R/functions.R:29:2
9. base::is.factor(x)

��

�� Results
���
Duration: 0.4 s

[FAIL 6 | WARN 0 | SKIP 0 | PASS 0]
Warning message:
�� Conflicts
��
myPackage conflicts
��
� `clean_unemp` masks `myPackage::clean_unemp()`.
� Did you accidentally source a file rather than
using `load_all()`?
Run `rm(list = c("clean_unemp"))` to remove the
conflicts.

160

5.4 And back to testing

>

At this stage, it might be a good idea to at least commit. Maybe
let’s not push yet, and only push once the tests have been rewrit-
ten to pass. Commit from RStudio or from a terminal, the choice
is yours. We now have to rewrite the tests, to make them pass
again. We also need to recreate the csv files for some of the tests,
and will probably need to create others. This is what the script
containing the tests could look like once you’re done:

test_that("selecting the grand duchy works", {

returned_value <- clean_unemp(
unemp,
year_of_interest = 2013,
level_of_interest = "Country",
col_of_interest = active_population) |>
as.data.frame()

expected_value <- as.data.frame(
list("year" = 2013,

"place_name" =
"Luxembourg",↪

"level" =
"Country",↪

"active_population"
= 242694)

↪

↪

)

expect_equal(returned_value, expected_value)

})

161

5 Unit tests

test_that("selecting cantons work", {

returned_value <- clean_unemp(
unemp,
year_of_interest = 2013,
level_of_interest = "Canton",
col_of_interest = active_population) |>
as.data.frame()

expected_value <-
read.csv("test_data_cantons.csv")↪

expect_equal(returned_value, expected_value)

})

test_that("selecting communes works", {

returned_value <- clean_unemp(
unemp,
year_of_interest = 2013,
level_of_interest = "Commune",
col_of_interest = active_population) |>
as.data.frame()

expected_value <-
read.csv("test_data_communes.csv")↪

expect_equal(returned_value, expected_value)

})

test_that("selecting one commune works", {

162

5.4 And back to testing

returned_value <- clean_unemp(
unemp,
year_of_interest = 2013,
place_name_of_interest = "Kayl",
col_of_interest = active_population) |>
as.data.frame()

expected_value <- as.data.frame(
list("year" = 2013,

"place_name" =
"Kayl",↪

"level" =
"Commune",↪

"active_population"
= 3863))

↪

↪

expect_equal(returned_value, expected_value)

})

test_that("wrong commune name", {

returned_value <- clean_unemp(
unemp,
year_of_interest = 2013,
place_name_of_interest = "Paris",
col_of_interest = active_population) |>
as.data.frame()

expected_value <- as.data.frame(
list("year" =

numeric(0),↪

163

5 Unit tests

"place_name" =
character(0),↪

"level" =
character(0),↪

"active_population"
=
numeric(0)))

↪

↪

↪

expect_equal(returned_value, expected_value)

})

test_that("wrong commune name: warning is thrown", {

expect_warning({
clean_unemp(
unemp,
year_of_interest = 2013,
place_name_of_interest = "Paris",
col_of_interest = active_population)

}, "This is likely")

})

Once you’re done, commit and push your changes.

You should now have a pretty good intuition about unit tests.
As you can see, unit tests are not just useful to make sure that
changes that get introduced in our functions don’t result in re-
gressions in our code, but also to actually improve our code.

164

5.4 And back to testing

Writing unit tests allows us to fill the shoes of our users and
rethink our code.

A little sidenote before continuing; you might want to look into
code coverage using the {covr} package. This package helps you
identify code from your package that is not tested yet. The goal
of course being to improve the coverage as much as possible!
Take a look at {cover}’s website to learn more.

Ok, one final thing; let’s say that we’re happy with our package.
To actually use it in other projects we have to install it to our
library. To do so, make sure RStudio is inside the right project,
and press CTRL-SHIFT-B. This will install the package to our
library.

165

https://covr.r-lib.org/

167

6 Setting up pipelines with {targets}

6 Setting up pipelines with
{targets}

168

6.1 Introduction

What you’ll have learned by the end of the chapter: how to set
up an (almost) reproducible pipeline.

6.1 Introduction

{targets} is a build automation tool for the R programming
language. Build, in the context of this course means the cre-
ation of a data product. As mentioned in the introduction, this
data product can be anything from predictions from a model to
interactive web applications. Automation means that this build
automation tool will take the burden off our shoulders when it’ll
be time to run the build pipeline. Using such a tool, program-
mers don’t need to think about which parts of the code to rerun
if they introduce a change somewhere. Only the parts affected
by the change will run. These tools also run the pipeline in
parallel, because they identify independent parts of the pipeline
which are then run simultaneously. Build automation tools have
many benefits, and because they work in a certain way, they also
force you to work in a more structured way.

6.2 Build automation with R

As an introduction, there really is not a better source than the
{targets} manual itself, and in particular the walkthrough sec-
tion. After reading this section, we have the basic ledge to build
our first pipeline. The goal of this pipeline will be to simply
create a plot using the unemployment data we’ve been working
on. Let’s create a new project in RStudio, but make sure that
you check the following boxes:

169

https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

6 Setting up pipelines with {targets}

You should see the following message in the R console:

* Initializing project ...
* Discovering package dependencies ... Done!
* Copying packages into the cache ... Done!
The following package(s) will be updated in the
lockfile:

CRAN ===============================
- renv [* -> 0.16.0]

The version of R recorded in the lockfile will be
updated:
- R [*] -> [4.2.1]

170

6.3 An aside on {renv}

* Lockfile written to
'~/six_to/first_pipeline/renv.lock'.

This is something that we have not discussed yet, so before we
move on, let’s have a little aside on what {renv} is.

6.3 An aside on {renv}

Whether they’re simple scripts to analyze some data or more
complex reproducible analytical pipelines, all of your projects
depend on the packages that you use for the analysis. And
these packages evolve and change. It can very well happen that
a function that you use from package {xyz} version 1 won’t be
available anymore in version 2. Or maybe it’s still available but
it works slightly differently. It can be something as trivial as the
arguments of the function have been renamed. The consequence
is that when you’ll try to rerun your code, it won’t work at all,
or worse, it’ll work, but produce a result that is not comparable
to old results anymore, because the function got changed and
the underlying algorithm isn’t the same anymore. So we need
a certain stability, and ideally keep reusing the same packages
for the same project. If you want to update a project to use
new packages version, this can of course also be done, but it
has to be conscious choice and you will have to make sure that
the updated pipeline (using the updated packages) is able to
reproduce old results before putting it into production.

It must be noted however that in my experience, it is usually
possible to rerun old R code without much hassle. But that’s
what makes it worse; you get so used to this stability that you
don’t think about a way to keep your projects reproducible, be-
cause issues rarely happen with R. It is thus best to get into the

171

6 Setting up pipelines with {targets}

habit to use a tool like {renv}, which offers a certain stability
to your projects.

{renv} creates separate package libraries, one per project. The
idea is quite simple; start your project with {renv} enabled (if
you’re using RStudio, you can check the box Use renv with this
project when starting a new project, if you’re not using RStudio,
you can run renv::init(), on the root of the folder’s project).
This will create a file in the root of your project called renv.lock.
You can open this file in a text editor, and you should see that
the R version you’re currently using is recorded (and the version
of {renv} itself). It should look something like this:

{
"R": {
"Version": "4.2.1",
"Repositories": [
{

"Name": "CRAN",
"URL": "http://cran.rstudio.com"

}
]

},
"Packages": {
"renv": {
"Package": "renv",
"Version": "0.16.0",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "c9e8442ab69bc21c9697ecf856c1e6c7",
"Requirements": []

}
}

}

172

6.3 An aside on {renv}

You can then work as usual. It doesn’t matter if you’re sim-
ply writing a script to perform a “simple” analysis, or doing
something more complex like a RAP. You will likely need to
re-install packages though; remember, {renv} sets up a library
per project!

Once you’re done and satisfied, run renv::snapshot(). As you
might have guessed from the name this will take a snapshot of
the project and write the current status to the renv.lock file:

> renv::snapshot()
The following package(s) will be updated in the
lockfile:

CRAN ===============================
- R6 [* -> 2.5.1]
- cli [* -> 3.4.1]
- dplyr [* -> 1.0.10]
- fansi [* -> 1.0.3]
- generics [* -> 0.1.3]
- glue [* -> 1.6.2]
- lifecycle [* -> 1.0.3]
- magrittr [* -> 2.0.3]
- pillar [* -> 1.8.1]
- pkgconfig [* -> 2.0.3]
- rlang [* -> 1.0.6]
- tibble [* -> 3.1.8]
- tidyselect [* -> 1.2.0]
- utf8 [* -> 1.2.2]
- vctrs [* -> 0.4.2]
- withr [* -> 2.5.0]

Do you want to proceed? [y/N]:

173

6 Setting up pipelines with {targets}

In it, you will see that the libraries needed to run the project
are also recorded. The renv.lock will now look like this:

{
"R": {
"Version": "4.2.1",
"Repositories": [
{

"Name": "CRAN",
"URL": "http://cran.rstudio.com"

}
]

},
"Packages": {
"R6": {
"Package": "R6",
"Version": "2.5.1",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "470851b6d5d0ac559e9d01bb352b4021",
"Requirements": []

},
"cli": {
"Package": "cli",
"Version": "3.4.1",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "0d297d01734d2bcea40197bd4971a764",
"Requirements": []

},
"dplyr": {
"Package": "dplyr",
"Version": "1.0.10",
"Source": "Repository",

174

6.3 An aside on {renv}

"Repository": "CRAN",
"Hash": "539412282059f7f0c07295723d23f987",
"Requirements": [

"R6",
"generics",
"glue",
"lifecycle",
"magrittr",
"pillar",
"rlang",
"tibble",
"tidyselect",
"vctrs"

]
},
"fansi": {
"Package": "fansi",
"Version": "1.0.3",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "83a8afdbe71839506baa9f90eebad7ec",
"Requirements": []

},
"generics": {
"Package": "generics",
"Version": "0.1.3",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "15e9634c0fcd294799e9b2e929ed1b86",
"Requirements": []

},
"glue": {
"Package": "glue",

175

6 Setting up pipelines with {targets}

"Version": "1.6.2",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "4f2596dfb05dac67b9dc558e5c6fba2e",
"Requirements": []

},
"lifecycle": {
"Package": "lifecycle",
"Version": "1.0.3",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "001cecbeac1cff9301bdc3775ee46a86",
"Requirements": [

"cli",
"glue",
"rlang"

]
},
"magrittr": {
"Package": "magrittr",
"Version": "2.0.3",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "7ce2733a9826b3aeb1775d56fd305472",
"Requirements": []

},
"pillar": {
"Package": "pillar",
"Version": "1.8.1",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "f2316df30902c81729ae9de95ad5a608",
"Requirements": [

176

6.3 An aside on {renv}

"cli",
"fansi",
"glue",
"lifecycle",
"rlang",
"utf8",
"vctrs"

]
},
"pkgconfig": {
"Package": "pkgconfig",
"Version": "2.0.3",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "01f28d4278f15c76cddbea05899c5d6f",
"Requirements": []

},
"renv": {
"Package": "renv",
"Version": "0.16.0",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "c9e8442ab69bc21c9697ecf856c1e6c7",
"Requirements": []

},
"rlang": {
"Package": "rlang",
"Version": "1.0.6",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "4ed1f8336c8d52c3e750adcdc57228a7",
"Requirements": []

},

177

6 Setting up pipelines with {targets}

"tibble": {
"Package": "tibble",
"Version": "3.1.8",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "56b6934ef0f8c68225949a8672fe1a8f",
"Requirements": [

"fansi",
"lifecycle",
"magrittr",
"pillar",
"pkgconfig",
"rlang",
"vctrs"

]
},
"tidyselect": {
"Package": "tidyselect",
"Version": "1.2.0",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "79540e5fcd9e0435af547d885f184fd5",
"Requirements": [

"cli",
"glue",
"lifecycle",
"rlang",
"vctrs",
"withr"

]
},
"utf8": {
"Package": "utf8",

178

6.3 An aside on {renv}

"Version": "1.2.2",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "c9c462b759a5cc844ae25b5942654d13",
"Requirements": []

},
"vctrs": {
"Package": "vctrs",
"Version": "0.4.2",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "0e3dfc070b2a8f0478fcdf86fb33355d",
"Requirements": [

"cli",
"glue",
"rlang"

]
},
"withr": {
"Package": "withr",
"Version": "2.5.0",
"Source": "Repository",
"Repository": "CRAN",
"Hash": "c0e49a9760983e81e55cdd9be92e7182",
"Requirements": []

}
}

}

On your end, you’re done. You can push this project to
github.com for instance, and someone else who wishes to run
this project will have to simply:

• Clone the repository;

179

6 Setting up pipelines with {targets}

• Run renv::restore() to install all the required libraries.

And that’s it! This person, who might be future you, will now
be able to re-run the project with the required libraries and the
right versions.

In a coming section we are actually going to do just that, but
for now, let’s go back to {targets}.

180

6.3 An aside on {renv}

181

6 Setting up pipelines with {targets}

6.4 Our actual first pipeline

182

6.4 Our actual first pipeline

Let’s start by building our very first pipeline. Our goal is the
following: start with the unemployment data for Luxembourg,
and build a series of graphs. We want one graph for Luxembourg,
one graph for cantons, and one graph for selected communes.
This series of graphs will be our data product; let’s not focus too
much on the data product itself, the focus here is on building
the pipeline. In the next chapter we are going to build more
interesting data products.

I’ve been mentioning pipelines for some time now, but what is
it actually? Nothing more than a script. Let’s go back to the
project we started at the beginning of the chapter. We can now
create a _targets.R file on the root of the project. Insert the
following lines in the script, we will then go through each of
them:

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)

list(
tar_target(unemp_data, get_data())

)

The first line simply loads the {targets} package, the second
to fourth lines load the packages required for the pipeline to ac-
tually run. Then comes a list. Inside this list is where we will
define the targets, or the (intermediary) outputs of the pipeline.
We defined unemp_data as being the output of the function
get_data()… but where does this function come from? Well,
we need to create another script called functions.R where we
will define every function the we need for this pipeline. Let’s
create an empty script and put the following lines in it:

183

6 Setting up pipelines with {targets}

get_data <- function(){
myPackage::unemp

}

This function is as simple as it gets; it doesn’t take any argu-
ments and returns the data that we added to our package. This
function could of course just as well read data from your com-
puter, or from the Internet, and return it. The fact our data is
inside our package is just for convenience. We can now go back
to _targets.R and first of all, add a line to source this file, and
then define new targets:

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)
source("functions.R")

list(
tar_target(unemp_data, get_data())

)

You can now run the pipeline using tar_make()… and you should
get immediately an error:

> targets::tar_make()
• start target unemp_data
� error target unemp_data
• end pipeline [0.198 seconds]

This is because our package is not in the renv.lock file. Re-
member that {renv} creates a new library per project, and as

184

6.4 Our actual first pipeline

such we now need to install {myPackage} from github.com into
our project. For this, run the following line (you might need to
install {devtools} beforehand):

devtools::install_github("b-rodrigues/myPackage",
ref =

"e9d9129de3047c1ecce26d09dff429ec078d4dae")↪

The provided hash will make sure that the right version of the
package gets installed for this project. This way, if I continue
to work on the package, users will be able to still install the
correct version. Since we’ve installed some new packages, run
renv::snapshot() to rewrite the renv.lock file:

> renv::snapshot()
The following package(s) will be updated in the
lockfile:

CRAN ===============================
- Matrix [* -> 1.4-1]
- backports [* -> 1.4.1]
- base64url [* -> 1.4]
- callr [* -> 3.7.2]
- codetools [* -> 0.2-18]
- data.table [* -> 1.14.4]
- digest [* -> 0.6.30]
- evaluate [* -> 0.17]
- highr [* -> 0.9]
- igraph [* -> 1.3.5]
- knitr [* -> 1.40]
- lattice [* -> 0.20-45]
- processx [* -> 3.7.0]
- ps [* -> 1.7.1]

185

6 Setting up pipelines with {targets}

- stringi [* -> 1.7.8]
- stringr [* -> 1.4.1]
- targets [* -> 0.13.5]
- xfun [* -> 0.34]
- yaml [* -> 2.3.6]

GitHub =============================
- myPackage [* ->
b-rodrigues/myPackage@e9d9129de3047c1ecce26d09dff429ec078d4dae]

Do you want to proceed? [y/N]:

It might be a good idea to take a look at the lock file, and in
particular the {myPackage} entry. If everything went alright,
you should see something like this:

"myPackage": {
"Package": "myPackage",
"Version": "0.1.0",
"Source": "GitHub",
"RemoteType": "github",
"RemoteHost": "api.github.com",
"RemoteRepo": "myPackage",
"RemoteUsername": "b-rodrigues",
"RemoteRef":
"e9d9129de3047c1ecce26d09dff429ec078d4dae",
"RemoteSha":
"e9d9129de3047c1ecce26d09dff429ec078d4dae",
"Hash": "4740b43847e10e012bad2b8a1a533433",
"Requirements": [
"dplyr",
"janitor",
"rlang"

186

6.4 Our actual first pipeline

]
},

It can happen that every entry starting with “Remote” is miss-
ing. This depends how this package was installed, and if the
DESCRIPTION file of this package contains the required info. If
you installed it using devtools::install_github(), it should
be fine. But it is always better to check. In case these are miss-
ing, you should add them by hand. Adding these fields will en-
sure that the package will always get installed from github.com,
and that the correct commit will be used. You can then save
the lock file and commit it alongside the rest of your project.

Ok, now we should be able to run our pipeline with
targets::tar_make().

This will not create any output, but this way you can at least test
that it’s running. Also, remember tar_load() and tar_read()
from the walkthrough? First try to run tar_read(unemp_data),
this should print the data in your console. You can then run
tar_load(unemp_data), which this time loads the data in your
global environment. You can now access it interactively. This
is quite useful if you need to inspect intermediary outputs.

Let’s now add intermediary outputs; we need data for Luxeb-
mourg, data for the cantons and data for some communes. This
is where the function clean_unemp() from our package will
come into play:

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)
source("functions.R")

187

6 Setting up pipelines with {targets}

list(
tar_target(
unemp_data,
get_data()

),

tar_target(
lux_data,
clean_unemp(unemp_data,

place_name_of_interest =
"Luxembourg",↪

level_of_interest = "Country",
col_of_interest = active_population)

),

tar_target(
canton_data,
clean_unemp(unemp_data,

level_of_interest = "Canton",
col_of_interest = active_population)

),

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",
"Wiltz", "Esch/Alzette",
"Mersch"),

↪

↪

↪

col_of_interest = active_population)
)

)

188

6.4 Our actual first pipeline

At this stage it might be interesting to take a look at the network.
Call tar_visnetwork() (you might get prompted to install yet
another package) and take a look at the pipeline:

All that’s missing now is to write a function to create plots. Since
we didn’t learn how to make them using {ggplot2}, simply copy
the code below into the functions.R script:

make_plot <- function(data){
ggplot(data) +
geom_col(
aes(

y = active_population,

189

6 Setting up pipelines with {targets}

x = year,
fill = place_name

)
) +
theme(legend.position = "bottom",

legend.title = element_blank())
}

We can now use this function to define new targets in our
_targets.R file:

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)
source("functions.R")

list(
tar_target(

unemp_data,
get_data()

),

tar_target(
lux_data,
clean_unemp(unemp_data,

place_name_of_interest =
"Luxembourg",↪

level_of_interest = "Country",
col_of_interest =

active_population)↪

190

6.4 Our actual first pipeline

),

tar_target(
canton_data,
clean_unemp(unemp_data,

level_of_interest = "Canton",
col_of_interest =

active_population)↪

),

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",
"Wiltz", "Esch/Alzette",
"Mersch"),

↪

↪

↪

col_of_interest =
active_population)↪

),

tar_target(
lux_plot,
make_plot(lux_data)

),

tar_target(
canton_plot,
make_plot(canton_data)

),

tar_target(
commune_plot,

191

6 Setting up pipelines with {targets}

make_plot(commune_data)
)

)

Let’s now take a look at the pipeline again with tar_visnetwork():

We see that new targets are outdated, and we need to run the
pipeline to build them, so run the pipeline using tar_make(). If
everything went well, we can now take a look at our plots using
tar_read(luxembourg_plot).

192

6.4 Our actual first pipeline

Finally, let’s write these plots to disk. The way to save a ggplot
to disk is to use the ggsave() function. But targets have to
return something, so side-effects like writing to disk must be
handled in a specific way. What we’re going to do is write a
wrapper around ggsave() that will take the path where the
plot should be save to disk, save the plot to the specified path,
and then return the plot. This way, we have a function that
does not only have a side-effect, but also a return value. Let’s
go back to functions.R and add the following lines:

save_plot <- function(save_path, plot){
ggsave(save_path, plot)
save_path

}

We can now define these additional targets:

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)
source("functions.R")

list(
tar_target(

unemp_data,
get_data()

),

tar_target(
lux_data,
clean_unemp(unemp_data,

193

https://books.ropensci.org/targets/targets.html#side-effects

6 Setting up pipelines with {targets}

place_name_of_interest =
"Luxembourg",↪

level_of_interest = "Country",
col_of_interest =

active_population)↪

),

tar_target(
canton_data,
clean_unemp(unemp_data,

level_of_interest = "Canton",
col_of_interest =

active_population)↪

),

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",
"Wiltz", "Esch/Alzette",
"Mersch"),

↪

↪

↪

col_of_interest =
active_population)↪

),

tar_target(
lux_plot,
make_plot(lux_data)

),

tar_target(
canton_plot,

194

6.4 Our actual first pipeline

make_plot(canton_data)
),

tar_target(
commune_plot,
make_plot(commune_data)

),

tar_target(
luxembourg_saved_plot,
save_plot("fig/luxembourg.png", lux_plot),
format = "file"

),

tar_target(
canton_saved_plot,
save_plot("fig/canton.png", canton_plot),
format = "file"

),

tar_target(
commune_saved_plot,
save_plot("fig/commune.png", commune_plot),
format = "file"

)

)

Let’s take a look at the network again:

195

6 Setting up pipelines with {targets}

Because we are saving a file to disk, we must add the format =
"file" argument to the target definiton. This way, {targets}
watches these files for changes as well, and reruns the pipeline
if a change is detected. Run the pipeline now with tar_make()
and watch the plots appear in the fig folder (which you may
have to create before running the pipeline).

Let’s now change make_plot() function like this:

make_plot <- function(data){
ggplot(data) +
geom_col(
aes(
y = active_population,
x = year,

196

6.4 Our actual first pipeline

fill = place_name
)

) +
theme(legend.position = "bottom",

legend.title = element_blank()) +
labs(title = paste0("Unemployement for ",

paste(unique(data$place_name), collapse = ",
")))

↪

↪

}

If you now save the script, and check the pipeline with
tar_visnetwork(), you will see that some targets are not out
of date:

197

6 Setting up pipelines with {targets}

Every targets that gets made by make_plot() must be recom-
puted, and every targets that depends on the intemediary out-
puts of make_plot() as well. Reloading the data is not neces-
sary, since the edits on make_plot() do not affect these targets.
This is an incredible cognitive load that is taken off the shoul-
ders of data scientists; no need to keep track of outputs that are
outdated, and no need to re-run everything either, saving lots
of time and processing power.

You now know the basics of setting up a reproducible (well, al-
most, as you’ll see) analytical pipeline. Let’s now move to run-
ning someone else’s pipeline.

198

6.5 Running someone else’s pipeline

6.5 Running someone else’s pipeline

Let’s now suppose that we want to run someone else’s pipeline,
and let’s assume that that person did a good job and used
{renv} to lock the dependencies of the pipeline, and also made
the pipeline available on github.com.

As an example, we are going to use this repository from the
author of {targets}. To start clone this repository:

git clone git@github.com:wlandau/targets-minimal.git

and open an R session in the root of the folder (or open the
targets-minimal.rproj file in the folder you just cloned to
open the project in RStudio), then call renv::restore(). You
should see this:

> renv::restore()

This project has not yet been activated.
Activating this project will ensure the project
library is used during restore.
Please see `?renv::activate` for more details.

Would you like to activate this project before
restore? [Y/n]:

Press the y key on your keyboard to continue. The packages
to run this pipeline will get installed in a new library, separate
from the default library as usual with {renv}:

� Using R 4.2.1 (lockfile was generated with R 4.1.0)
* Project '~/targets-minimal' loaded. [renv 0.16.0]

199

https://github.com/wlandau/targets-minimal

6 Setting up pipelines with {targets}

* The project library is out of sync with the
lockfile.
* Use `renv::restore()` to install packages recorded
in the lockfile.
The following package(s) will be updated:

CRAN ===============================
...very long list of packages I'm not showing
here...
Do you want to proceed? [y/N]:

Press Y to install the packages in the separate library.

As you can see from the screenshot below, because the packages
used for this pipeline are not old(ish), they get either download
from MRAN or from CRAN’s archive (MRAN is the Microsoft
R Archive Network, a mirror of CRAN maintained by Microsoft,
which gets snapshotted every day. It is thus possible to download
old packages from there):

You should now restart your R session for good measure (go to

200

6.6 Why we need more

Session -> Restart Session). You can now run the pipeline
simply with:

targets::tar_make()

The data product (or output) from this pipeline is the
index.html file that appeared on the root folder of your
project.

6.6 Why we need more

While {renv} is a huge step towards the right direction, there
are at least four problems with it:

• {renv} doesn’t do anything about R itself: a pipeline
made to run on R version 3 (for example) could still pro-
duce different results when run on R 4, even if the pack-
ages are the same. In practice, however, R is quite stable,
and breaking changes between versions are very rare; most
code is retrocompatible for many versions.

• {renv} doesn’t do anything about the operating system
the pipeline is running on. Results can even be different
between different versions of the same operating system,
but in practice, that should only affect you in very specific
businesses were very high precision floating point arith-
metic is required.

• {renv} can sometimes fail to install packages. I tried run-
ning William Landau’s demo pipeline on two computers,
one running OpenSuse Linux and one running Windows
10. It ran successfully on Linux, but not on Windows.

201

https://www.frontiersin.org/articles/10.3389/fninf.2015.00012/full

6 Setting up pipelines with {targets}

• {renv} relies on CRAN archives staying online. While it
is very unlikely that CRAN will ever be offline, as there
are many, many mirrors around the world, and it could be
argued that the longer CRAN is online, the likelier it is
it’ll stay online, for very mission critical projects it might
be needed to host your own mirror.

We are going to solve these issues in chapter 9, but for now, let’s
be grateful for {renv}, {targets} and CRAN, for they allow us
to quite easily build (almost) reproducible pipelines quite easily!
In the next chapter, we will continue building pipelines and build
our very first data products.

6.7 Further reading

• The {targets} manual
• The {renv} website

202

https://en.wikipedia.org/wiki/Lindy_effect
https://en.wikipedia.org/wiki/Lindy_effect
https://en.wikipedia.org/wiki/Lindy_effect
https://books.ropensci.org/targets/
https://rstudio.github.io/renv/articles/renv.html

203

7 Data products

7 Data products

204

7.1 Introduction

What you’ll have learned by the end of the chapter: you’ll know
how to build data products using Quarto and Shiny.

7.1 Introduction

We are going to start by building data products using Quarto.

Quarto is a tool created by Posit, the company behind RStudio
and Shiny. Quarto leverages pandoc to convert between many
document formats (for example, from .md to .docx) and makes
it possible to embed R, Python, Julia and Observable JS code
into documents. It is not an R-specific tool, so it is a program
that you must install on your computer. So go to this link and
download and install Quarto.

We are going to start simple, with “static” data products. By
static I mean products without any sort of interactivity, so the
user can look at them, read them, but not change them in any
way. These products are essentially going to be documents in
the .docx, .pptx and .pdf formats, but also .html. Thanks
to Quarto, it is thus possible to programmatically create docu-
ments.

7.2 A first taste of Quarto

A Quarto file looks very close to a standard Markdown file. So
if you know Markdown, you will not have many problems to
switch to Quarto. If you don’t know Markdown, no worries, its
syntax is quite simple and can be very quickly picked up.

205

https://quarto.org/docs/get-started/

7 Data products

Let’s start with a basic Quarto source. Open your favorite
text editor (doesn’t have to be RStudio) and create a file called
example.qmd and copy the following lines in it:

title: "My Title"
author: "My name"
date: today

This is a simple quarto document
```{r}
n <- 10
rnorm(n)
```

This is the output.

The first few lines of the document is where you can define the
title of the document, the name of the author and the date. For
the date, I’ve use the today keyword to get today’s date but you
could use a string to set the date to a specific day (for example,
“2022-10-28”). The content in the document consists of a level
2 title (## This is a simple quarto document) and of an R
code chunk. Code chunks is were you will write code that gets
then evaluated at render (compile) time. To compile this file,
run the following inside a terminal:

� quarto render example.qmd

If you’re inside RStudio, you can also render the document by
pressing CTRL-SHIFT-K or run the command:

206

https://tiny-melomakarona-b87385.netlify.app/

7.2 A first taste of Quarto

quarto::quarto_render("example.qmd")

There are various ways to integrate Quarto with different edi-
tors:

• VS Code
• RStudio
• Jupyter
• (Neo)Vim, Emacs, Sublime

Once the file is done rendering, you should find an html file in
the same folder. Open this html file inside a web browser and
see the output. It is possible to run arbitrary R code inside the
code chunks:

title: "My Title"
author: "My name"
date: today

This is a simple quarto document

```{r}
library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)

data("unemp")

unemp %>%

207

https://quarto.org/docs/get-started/hello/vscode.html
https://quarto.org/docs/get-started/hello/rstudio.html
https://quarto.org/docs/get-started/hello/jupyter.html
https://quarto.org/docs/get-started/hello/text-editor.html#editor-modes


7 Data products

janitor::clean_names() %>%
filter(level == "Commune",

place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

group_by(place_name) %>%
nest() %>%
mutate(plots = map2(.x = data, .y = place_name,
~ggplot(data = .x) +↪

theme_minimal() +↪

geom_line(aes(year,
unemployment_rate_in_percent, group = 1)) +

↪

↪

labs(title = paste("Unemployment in", .y)))) %>%↪

pull(plots)
```

This is what the output looks like.

As you can see, it is quite easy to create a document with po-
tentially hundreds of plots using what we’ve learned until now.
However, our document does not look great; for starters, we see
the source code there, which we would like to hide. People that
will read this document might not be interested in the source
code, but only in the plots. The other issue is that when loading
the {dplyr} package, users get some message informing them
about some functions that get masked. We would like to hide
all of this. It turns out that code chunks have options, and we
can use them to hide source code and warning messages:

208

https://scintillating-crostata-2df896.netlify.app/

7.2 A first taste of Quarto

title: "My Title"
author: "My name"
date: today

This is a simple quarto document

```{r}
#| echo: false
#| warning: false

library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)

data("unemp")

unemp %>%
janitor::clean_names() %>%
filter(level == "Commune",

place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

group_by(place_name) %>%
nest() %>%
mutate(plots = map2(.x = data, .y = place_name,
~ggplot(data = .x) +↪

theme_minimal() +↪

geom_line(aes(year,
unemployment_rate_in_percent, group = 1)) +

↪

↪

209



7 Data products

labs(title = paste("Unemployment in", .y)))) %>%↪

pull(plots)
```

This is what the output looks like.

Rendering this document will result in something nicer. We
could also fold the code instead of completely removing it. This
is useful if we need to send the document to collaborators who
might be interested in the source code as well. However, code
folding is something that only works in html outputs, and thus
we need to specify the output format in the header of the docu-
ment (look at the three new lines after we define the data), and
also remove the echo: false option from the R chunk:

title: "My Title"
author: "My name"
date: today
format:
html:
code-fold: true

This is a simple quarto document

```{r}
#| warning: false

library(dplyr)
library(tidyr)
library(purrr)

210

https://velvety-taffy-93cb66.netlify.app/


7.2 A first taste of Quarto

library(ggplot2)
library(myPackage)

data("unemp")

unemp %>%
janitor::clean_names() %>%
filter(level == "Commune",

place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

group_by(place_name) %>%
nest() %>%
mutate(plots = map2(.x = data, .y = place_name,
~ggplot(data = .x) +↪

theme_minimal() +↪

geom_line(aes(year,
unemployment_rate_in_percent, group = 1)) +

↪

↪

labs(title = paste("Unemployment in", .y)))) %>%↪

pull(plots)
```

This is what the output looks like.

It is of course possible to write several R chunks:

title: "My Title"
author: "My name"
date: today
format:

211

https://voluble-choux-674399.netlify.app/

7 Data products

html:
code-fold: true

This is a simple quarto document

```{r}
#| warning: false

library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)

data("unemp")

unemp <- unemp %>%
janitor::clean_names() %>%
filter(level == "Commune")

```

There are `r length(unique(unemp$place_name))`
communes in the dataset.↪

Below we plot the unemployment rate for 3 communes:

```{r}
unemp %>%
filter(place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

group_by(place_name) %>%
nest() %>%
mutate(plots = map2(.x = data, .y = place_name,
~ggplot(data = .x) +↪

212



7.2 A first taste of Quarto

theme_minimal() +↪

geom_line(aes(year,
unemployment_rate_in_percent, group = 1)) +

↪

↪

labs(title = paste("Unemployment in", .y)))) %>%↪

pull(plots)
```

This is what the output looks like.

7.2.1 Python and Julia code chunks

It is possible, inside the same Quarto document, to define code
chunks that run Python (or even Julia) code. Put the following
lines inside a file called example2.qmd (to run the example below,
you will need to have Python installed):

title: "R and Python"
author: "Bruno Rodrigues"
date: today

This is a simple quarto document

```{r}
#| warning: false

library(dplyr)

213

https://relaxed-concha-89be95.netlify.app/


7 Data products

library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)

data("unemp")

unemp <- unemp %>%
janitor::clean_names() %>%
filter(level == "Commune")

```

```{python}
print("hello from Python")
import sys
print(sys.version)
```

This is what the output looks like.

If you have trouble rendering this line, make sure that you have
the jupyter and jupyterlab modules installed.

It is also possible to pass objects from R to Python (and vice-
versa):

title: "R and Python"
author: "Bruno Rodrigues"
date: today

This is a simple quarto document

214

https://phenomenal-clafoutis-2b05c1.netlify.app/

7.2 A first taste of Quarto

```{r}
#| warning: false

library(dplyr)
library(tidyr)
library(purrr)
library(ggplot2)
library(myPackage)

data("unemp")

unemp <- unemp %>%
janitor::clean_names() %>%
filter(level == "Commune")

```

The data that was loaded and cleaned from R can be
accessed from Python using `r.unemp`:↪

```{python}
import pandas as pd
unemp_pd = pd.DataFrame(r.unemp)
unemp_pd.head
```

This is what the output looks like.

The HTML output is quite flexible, as it is possible to also inte-
grate JS libraries. The following example uses the {g2r} library
(an R wrapper around the g2 javascript library) for creating vi-
sualisations. To run the following code, make sure that you have
the {g2r} package installed (can only be install from github):

215

https://endearing-gnome-80e9df.netlify.app/

7 Data products

devtools::install_github("devOpifex/g2r")

The source file looks like this:

title: "Quarto and JS libraries"
author: "My name"
date: today
format:
html:
code-fold: true

This is a simple quarto document showing basic
plot interactivity using {g2r}↪

```{r}
#| warning: false

library(dplyr)
library(tidyr)
library(purrr)
library(g2r)
library(myPackage)

data("unemp")

unemp <- unemp %>%
janitor::clean_names() %>%
filter(level == "Commune")

```

216

7.2 A first taste of Quarto

There are `r length(unique(unemp$place_name))`
communes in the dataset. Below we plot the
unemployment rate for 3 communes:

↪

↪

```{r}
unemp %>%

filter(place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

g2(data = .) %>%
fig_line(asp(year, unemployment_rate_in_percent,
color = place_name))↪

```

This is what the output looks like.

It is possible to use other JS libraries, like here DataTables,
wrapped inside the {DT} package:

title: "Quarto and JS libraries"
author: "My name"
date: today
format:

html:
toc: true
code-fold: true

Basic plot interactivity using {g2r}

```{r}
#| warning: false

217

https://timely-marzipan-6380f0.netlify.app/


7 Data products

library(dplyr)
library(tidyr)
library(purrr)
library(g2r)
library(DT)
library(myPackage)

data("unemp")

unemp <- unemp %>%
mutate(year = as.character(year)) %>%
janitor::clean_names() %>%
filter(level == "Commune")

```

There are `r length(unique(unemp$place_name))`
communes in the dataset. Below we plot the
unemployment rate for 3 communes:

↪

↪

```{r}
unemp %>%
filter(place_name %in% c("Luxembourg",
"Esch-sur-Alzette", "Wiltz")) %>%↪

g2(data = .) %>%
fig_line(asp(year, unemployment_rate_in_percent,
color = place_name))↪

```

Interactive tables with {DT}

```{r}
unemp %>%
DT::datatable(filter = "top")

218



7.2 A first taste of Quarto

```

Others

You can find more widgets over
[here](http://gallery.htmlwidgets.org/).↪

This is what the output looks like.

The final example illustrates templating. It is possible to write
code that generates qmd code:

title: "Templating with Quarto"
author: "Bruno Rodrigues"
date: today
format:

html:
toc: true

Set up
The goal is to have a frequency table for each

question in a survey. But we↪

do not want to have to do it by hand, so we define a
function to create a↪

table, and then, using the templating capabilities
of Quarto, write some↪

code to generate valid qmarkdown code. In the
example below our survey only↪

has 4 questions, but the solution described
trivially scales to an infinity↪

219

https://playful-cucurucho-5cdcbb.netlify.app/

7 Data products

of questions. This is not the case if you’re solving
this problem by hand.↪

Start by loading the data and defining some needed
variables:↪

```{r}
#| warning: false
library(lubridate)
library(dplyr)
library(purrr)
library(rlang)
library(DT)
survey_data <- read.csv(
"https://gist.githubusercontent.com/b-rodrigues/0c2249dec5a9c9477e0d1ad9964a1340/raw/873bcc7532b8bad613235f029884df1d0b947c90/survey_example.csv"
)

```

Let’s take a look at the data:

```{r}
datatable(survey_data)
```

The column names are actually questions, so we save
those in a variable:↪

```{r}
questions <- colnames(survey_data)

questions
```

220

7.2 A first taste of Quarto

Now we define question codes:

```{r}
codes <- paste0("var_", seq(1, 4))

codes
```

We create a lookup table that links questions to
their codes:↪

```{r}
lookup <- bind_cols("codes" = codes, "questions" =

questions)↪

datatable(lookup)
```

Finally, we replace the question names in the
dataset by the code:↪

```{r}
colnames(survey_data) <- codes

datatable(survey_data)
```

Now, we define a function that creates a frequency
table. This function has↪

two arguments: `dataset` and `var`. It uses the
`dplyr::count()` function to↪

count each instance of the levels of `var` in
`dataset`. Then it uses the↪

221

7 Data products

`knitr::kable()` function. This functions takes a
data frame as an argument↪

and returns a table formatted in markdown code:

```{r}
create_table <- function(dataset, var){
dataset %>%
count(!!var) %>%
knitr::kable()

}
```

The next function is the one that does the magic: it
takes only one argument↪

as an input, and generates valid markdown code using
the `knitr::knit_expand()`↪

function. Any variable between `{{}}` gets replaced
by its value (so↪

`{{question}}` gets replaced by the question that
gets fetched from the↪

lookup table defined above). Using this function, we
can now loop over↪

question codes, and what we get in return is valid
markdown code that defines↪

a section with the question as the title, and our
table.↪

```{r}
return_section <- function(var){
a <- knitr::knit_expand(text = c("##
{{question}}", create_table(survey_data,
var)),

↪

↪

question =
lookup$questions[grepl(quo_name(var),
lookup$codes)])

↪

↪

222



7.2 A first taste of Quarto

cat(a, sep = "\n")
}
```

Our codes are strings, so to be able to use them
inside of `dplyr::count()`↪

we need to define them as bare string, or symbols.
This can be done using the↪

`rlang::sym()` function. If this is confusing, try
running `count(mtcars, "am")`↪

and you will see that it will not return what you
want (compare to `count(mtcars, am)`).↪

This is also why we needed `rlang::quo_name()` in
the function above, to convert↪

the symbol back to a string, which is what `grepl()`
requires:↪

```{r}
sym_codes <- map(codes, sym)
```

Finally, we can create the sections. The line below
uses `purrr::walk()`, which↪

is equivalent to `purrr::map()`, the difference
being that we use `purrr::walk()`↪

when we are interested in the side effects of a
function:↪

```{r, results="asis"}
walk(sym_codes, return_section)
```

This is what the output looks like..

223

https://startling-shortbread-bc36ea.netlify.app/

7 Data products

7.3 Other output formats

7.3.1 Word

Let’s now generate a Word document using Quarto. As you will
see, this will be quite easy; but keep in mind that the basic
interactivity that we have seen with HTML outputs won’t be
possible here (but templating will work). Render the following
source file to get back a .docx document (you don’t even need
to have MS Word installed for it to work), and take of what we
changed from the previous file:

• Output changed from html to docx;
• No more {DT}, but {pander} instead to generated .docx

tables

Here is the file:

title: "Templating with Quarto"
author: "Bruno Rodrigues"
date: today
format: docx

Set up
The goal is to have a frequency table for each

question in a survey. But we↪

do not want to have to do it by hand, so we define a
function to create a↪

table, and then, using the templating capabilities
of Quarto, write some↪

224

7.3 Other output formats

code to generate valid qmarkdown code. In the
example below our survey only↪

has 4 questions, but the solution described
trivially scales to an infinity↪

of questions. This is not the case if you’re solving
this problem by hand.↪

Start by loading the data and defining some needed
variables:↪

```{r}
#| warning: false
library(lubridate)
library(dplyr)
library(purrr)
library(pander)
library(rlang)
survey_data <- read.csv(
"https://gist.githubusercontent.com/b-rodrigues/0c2249dec5a9c9477e0d1ad9964a1340/raw/873bcc7532b8bad613235f029884df1d0b947c90/survey_example.csv"
)

```

Let’s take a look at the data:

```{r}
pander(head(survey_data))
```

The column names are actually questions, so we save
those in a variable:↪

```{r}

225



7 Data products

questions <- colnames(survey_data)

questions
```

Now we define question codes:

```{r}
codes <- paste0("var_", seq(1, 4))

codes
```

We create a lookup table that links questions to
their codes:↪

```{r}
lookup <- bind_cols("codes" = codes, "questions" =

questions)↪

pander(lookup)
```

Finally, we replace the question names in the
dataset by the code:↪

```{r}
colnames(survey_data) <- codes

pander(survey_data)
```

Now, we define a function that creates a frequency
table. This function has↪

226

7.3 Other output formats

two arguments: `dataset` and `var`. It uses the
`dplyr::count()` function to↪

count each instance of the levels of `var` in
`dataset`. Then it uses the↪

`knitr::kable()` function. This functions takes a
data frame as an argument↪

and returns a table formatted in markdown code:

```{r}
create_table <- function(dataset, var){

dataset %>%
count(!!var) %>%
knitr::kable()

}
```

The next function is the one that does the magic: it
takes only one argument↪

as an input, and generates valid markdown code using
the `knitr::knit_expand()`↪

function. Any variable between `{{}}` gets replaced
by its value (so↪

`{{question}}` gets replaced by the question that
gets fetched from the↪

lookup table defined above). Using this function, we
can now loop over↪

question codes, and what we get in return is valid
markdown code that defines↪

a section with the question as the title, and our
table.↪

```{r}
return_section <- function(var){

227



7 Data products

a <- knitr::knit_expand(text = c("##
{{question}}", create_table(survey_data,
var)),

↪

↪

question =
lookup$questions[grepl(quo_name(var),
lookup$codes)])

↪

↪

cat(a, sep = "\n")
}
```

Our codes are strings, so to be able to use them
inside of `dplyr::count()`↪

we need to define them as bare string, or symbols.
This can be done using the↪

`rlang::sym()` function. If this is confusing, try
running `count(mtcars, "am")`↪

and you will see that it will not return what you
want (compare to `count(mtcars, am)`).↪

This is also why we needed `rlang::quo_name()` in
the function above, to convert↪

the symbol back to a string, which is what `grepl()`
requires:↪

```{r}
sym_codes <- map(codes, sym)
```

Finally, we can create the sections. The line below
uses `purrr::walk()`, which↪

is equivalent to `purrr::map()`, the difference
being that we use `purrr::walk()`↪

when we are interested in the side effects of a
function:↪

228

7.3 Other output formats

```{r, results="asis"}
walk(sym_codes, return_section)
```

You can download the output here.

Unlike with HTML outputs, it is also not possible to enable
code folding, but you could hide the code completely using the
“#| echo = false” chunk option. If you wan to hide all the code
without having to specify “#| echo = false” on each chunk you
can also add the execute option to the document header:

title: "Templating with Quarto"
author: "Bruno Rodrigues"
date: today
format: docx
execute:

echo: false

You can use a document as a template for Word documents gen-
erated with Quarto. For this, you must create a new Word file,
and update the styles. This document, with the updated styles,
can then be referenced in the header to act as a template:

title: "Using a custom Word style"
author: "Bruno Rodrigues"
date: today
format:

229

https://github.com/b-rodrigues/rap4mads/blob/master/img/ex10.docx?raw=true

7 Data products

docx:
reference-doc: fancy_template.docx

execute:
echo: false

Introduction

MS Word is great (lol)

This is normal text that is unreadable.

Just put fancy_template.docx in the same folder as your
source qmd file. You can download the template I’ve used from
here to test things out.

For more details, visit this page.

7.3.2 Presentations

It is also possible to create presentations using Quarto. There
are output formats as well: HTML, PDF and Powerpoint. I
will not discuss this here, because it is quite easy to get started,
simply follow along.

7.3.3 PDF

I do need to discuss the PDF output a little bit. In order to gen-
erate PDF files, Quarto uses the pdflatex compiler (or rather
pandoc, called by Quarto, uses pdflatex). pdflatex compiles
.tex source files to PDF, so what Quarto does (by leveraging

230

https://github.com/b-rodrigues/rap4mads/blob/master/img/fancy_template.docx?raw=true
https://quarto.org/docs/output-formats/ms-word-templates.html
https://quarto.org/docs/presentations/

7.3 Other output formats

pandoc) is first converting a .qmd file to a .tex file, and then
call pdflatex to compile it. .tex files are the file extension of
the Latex typesetting language, extensively used in science. It
makes it easy to write complex mathematical formulas, like this
one:

𝑆(𝜔) = 𝛼𝑔2

𝜔5 𝑒[−0.74{𝜔𝑈𝜔19.5
𝑔 }−4

]

= 𝛼𝑔2

𝜔5 exp[−0.74{𝜔𝑈𝜔19.5
𝑔 }

−4
]

Latex is a bit unwieldly, so using Markdown to write scientific
documents is becoming more and more popular. However, La-
tex still has an edge when it comes to tables. But thankfully,
it is possible to simply embed the Latex code that produces
these tables in Markdown, and there are packages that export
regression table directly to PDF. In any case, in order to com-
pile to PDF, you need to install Texlive. Installing Texlive is
frankly a mess, but thankfully there is a very simple alternative
called TinyTex. TinyTex is both available as an R package or
as a standalone installation, and was put together by the au-
thor of RMarkdown (in a sense, Quarto is a spiritual successor
to RMarkdown). This package installs a self-contained Texlive
installation locally, which can then be used to compile PDF doc-
uments (from, or outside of R/RStudio). I highly recommend
you use Tinytex. Instructions can be found here. Once you’ve
installed TinyTex, you can try to compile the following example
document (the first time you run this, it might take some time,
as the required packages get installed):

title: "PDF example with table"

231

https://yihui.org/tinytex/

7 Data products

format: pdf

A PDF document using Quarto

In the code below, we fit several models and then
use the `{modelsummary}`↪

package to print a nicely formatted table with
minimal effort:↪

```{r}
library(modelsummary)

url <-
'https://vincentarelbundock.github.io/Rdatasets/csv/HistData/Guerry.csv'↪

dat <- read.csv(url)

models <- list(
"OLS 1" = lm(Donations ~ Literacy + Clergy,
data = dat),↪

"Poisson 1" = glm(Donations ~ Literacy + Commerce,
family = poisson, data = dat),↪

"OLS 2" = lm(Crime_pers ~ Literacy + Clergy,
data = dat),↪

"Poisson 2" = glm(Crime_pers ~ Literacy +
Commerce, family = poisson, data = dat),↪

"OLS 3" = lm(Crime_prop ~ Literacy + Clergy,
data = dat)↪

)

modelsummary(models)
```
And an equation, for good measure:

232

7.4 Interactive web applications with {shiny}

\begin{align*}
S(\omega)
&= \frac{\alpha g^2}{\omega^5} e^{[

-0.74\bigl\{\frac{\omega U_\omega
19.5}{g}\bigr\}^{\!-4}\,]} \\

↪

↪

&= \frac{\alpha g^2}{\omega^5} \exp\Bigl[
-0.74\Bigl\{\frac{\omega U_\omega
19.5}{g}\Bigr\}^{\!-4}\,\Bigr]

↪

↪

\end{align*}

This is what the output looks like (scroll down to page 2)..

It is possible to author, many, many, different types of doc-
uments using Quarto. For more formats, consult this page.
Quarto is still very new – it was officially anounced in July of
2022 by Posit– so much more content will arrive. There are still
many features of Quarto that we have not explored, so take your
time to read its documentation in detail.

7.4 Interactive web applications with
{shiny}

{shiny} is a package developed by Posit to build interactive web
applications. These apps can be quite “simple” (for example, an
app that shows a graph but in which the user can choose the
variable to plot), but can be arbitrarily complex. Some people
even go as far as make games with {shiny}. A version for Python
is also in alpha, and you can already experiment with it.

233

https://github.com/b-rodrigues/rap4mads/blob/master/img/ex12.pdf?raw=TRUE
https://quarto.org/docs/gallery/
https://shiny.rstudio.com/gallery/hex-memory.html
https://shiny.rstudio.com/py/

7 Data products

In this section, I will give a very, very short introduction to
{shiny}. This is because {shiny} is so feature-rich, that I could
spend 20 hours teaching you and even then we would not have
seen everything. That being said, we can with only some cursory
knowledge build some useful apps. These apps can run locally
on your machine, but they’re really only useful if deploy them
on a server, so that users can then use these web apps on their
browsers.

7.4.1 The basic structure of a Shiny app

Shiny apps are always made of at least 2 parts: a server and a
ui. In general, each of these parts are in separate scripts called
server.R and ui.R. It is possible to have another script, called
global.R, where you can define variables that you want to be
available for both the server and the ui, and to every user of
your app.

Let’s start by building a very basic app. This app will allow users
to visualize unemployment data for Luxembourg. For now, let’s
say that we want users only to be able to select communes, but
not variables. The example code below is based on this official
example (this is how I recommend you learn by the way. Take a
look at the different example there are and adapt them to suit
your needs! You can find the examples here). Create a folder
called something like my_app and then create three scripts in
it:

• global.R
• server.R
• ui.R

Let’s start with global.R:

234

https://shiny.rstudio.com/gallery/telephones-by-region.html
https://shiny.rstudio.com/gallery/telephones-by-region.html
https://shiny.rstudio.com/gallery/#demos

7.4 Interactive web applications with {shiny}

library(myPackage)
library(dplyr)
library(ggplot2)

data("unemp")

In the global.R file, we load the required packages and data.
This is now available everywhere. Let’s continue with the
server.R script:

server <- function(session, input, output) {

filtered_data <- reactive(
unemp %>%
filter(place_name %in%

input$place_name_selected)↪

)

output$unemp_plot <- renderPlot({

ggplot(data = filtered_data()) +
theme_minimal() +
geom_line(aes(year,

unemployment_rate_in_percent, color =
place_name)) +

↪

↪

labs(title = paste("Unemployment in",
paste(input$place_name_selected, collapse
= ", ")))

↪

↪

})
}

235

7 Data products

Several things need to be commented here: first, the script
contains a single function, called server(). This function
take three arguments, session, input and output. I won’t go
into details here, but you should know that you will never call
the server() function yourself, and that these arguments are
required so the function can… function. I will leave a reference
at the end of this section with more details. The next important
thing is that we defined an object called filtered_data. This
is a reactive object. What this means is that this object should
get recomputed every time the user interacts with it. But how
does the user interact with it? By choosing the place_name
he or she wants to see! The predicate inside filter() is
place_name %in% input$place_name_selected. Where does
that input$place_name_selected come from? This comes
from the ui (that we have not written yet). But the idea is
that the user will be able to chose place names from a list, and
this list will be called place_name_selected and will contain
the place names that the user wants to see.

Finally, we define a new object called output$unemp_plot. The
goal of the server() function is to compute things that will be
part of the output list. This list, and the objects it contains,
get then rendered in the ui. unemp_plot is a ggplot graph that
uses the reactive data set we defined first. Notice the () after
filtered_data inside the ggplot call. These are required; this
is how we say that the reactive object must be recomputed. If
the plot does not get rendered, the reactive data set does not
get computed, since it never gets called.

Ok so now to the ui. Let’s take inspiration from the same exam-
ple again:

ui <- function(request){
fluidPage(

236

7.4 Interactive web applications with {shiny}

titlePanel("Unemployment in Luxembourg"),

sidebarLayout(

sidebarPanel(
selectizeInput("place_name_selected",

"Select place:",↪

choices=unique(unemp$place_name),↪

multiple = TRUE,
selected = c("Rumelange",

"Dudelange"),↪

options = list(
plugins =

list("remove_button"),↪

create = TRUE,
persist = FALSE # keep created

choices in dropdown↪

)
),

hr(),
helpText("Original data from STATEC")

),

mainPanel(
plotOutput("unemp_plot")

)
)

)

}

237

7 Data products

I’ve added some useful things to the ui. First of all, I made it
a function of an argument, request. This is useful for book-
marking the state of the variable. We’ll add a bookmark button
later. The ui is divided into two parts, a sidebar panel, and
a main panel. The sidebar panel is where you will typically
add dropdown menus, checkboxes, radio buttons, etc, for the
users to make various selections. In the main panel, you will
show the result of their selections. In the sidebar panel I add
a selectizeInput() to create a dynamic dropdown list using
the selectize JS library, included with {shiny}. The avail-
able choices are all the unique place names contained in our
data, I allow users to select multiple place names, by default
two communes are selected and using the options argument I
need little “remove” buttons in the selected commune names.
Finally, in the main panel I use the plotOutput() function to
render the plot. Notice that I use the name of the plot defined
in the server, “unemp_plot”. Finally, to run this, add a new
script, called app.R and add the following line in it:

shiny::runApp(".")

You can now run this script in RStudio, or from any R console,
and this should open a web browser with your app.

Believe it or not, but this app contains almost every ingredient
you need to know to build shiny apps. But of course, there are
many, many other widgets that you can use to give your users
even more ways to interact with applications.

7.4.2 Slightly more advanced shiny

Let’s take a look at another, more complex example. Because
this second example is much more complex, let’s first take a look

238

7.4 Interactive web applications with {shiny}

at a video of the app in action:

The global file will be almost the same as before:

library(myPackage)
library(dplyr)
library(ggplot2)
library(g2r)

data("unemp")

enableBookmarking(store = "url")

The only difference is that I load the {g2r} package to create
a nice interactive plot, and enable bookmarking of the state
of the app using enableBookmarking(store = "url"). Let’s
move on to the ui:

ui <- function(request){
fluidPage(

titlePanel("Unemployment in Luxembourg"),

sidebarLayout(

sidebarPanel(
selectizeInput("place_name_selected",

"Select place:",↪

choices=unique(unemp$place_name),↪

multiple = TRUE,
selected = c("Rumelange",

"Dudelange"),↪

239

7 Data products

options = list(
plugins =

list("remove_button"),↪

create = TRUE,
persist = FALSE # keep

created choices in
dropdown

↪

↪

)
),

hr(),
To allow users to select the variable, we

add a selectInput↪

(not selectizeInput, like above)
don’t forget to use

input$variable_selected in the↪

server function later!
selectInput("variable_selected", "Select

variable to plot:",↪

choices =
setdiff(unique(colnames(unemp)),
c("year", "place_name",
"level")),

↪

↪

↪

multiple = FALSE,
selected =

"unemployment_rate_in_percent",↪

),
hr(),
Just for illustration purposes, these

radioButtons will not be bound↪

to the actionButton.
radioButtons(inputId = "legend_position",

label = "Choose legend
position",↪

240

7.4 Interactive web applications with {shiny}

choices = c("top", "bottom",
"left", "right"),↪

selected = "right",
inline = TRUE),

hr(),
actionButton(inputId = "render_plot",

label = "Click here to generate
plot"),↪

hr(),
helpText("Original data from STATEC"),
hr(),
bookmarkButton()

),

mainPanel(
We add a tabsetPanel with two tabs. The

first tab show↪

the plot made using ggplot the second tab
shows the plot using g2r
tabsetPanel(
tabPanel("ggplot version",

plotOutput("unemp_plot")),↪

tabPanel("g2r version",
g2Output("unemp_plot_g2r"))↪

)
)

)
)

}

There are many new things. Everything is explained in the
comments within the script itself so take a look at them. What’s

241

7 Data products

important to notice, is that I now added two buttons, an action
button, and a bookmark button. The action button will be
used to draw the plots. This means that the user will choose
the options for the plot, and then the plot will only appear once
the user clicks on the button. This is quite useful in cases where
computations take time to run, and you don’t want the every
reactive object to get recomputed as soon as the user interacts
with the app. This way, only once every selection has been
made can the user give the green light to the app to compute
everything.

At the bottom of the ui you’ll see that I’ve added a
tabsetPanel() with some tabPanel()s. This is where
the graphs “live”. Let’s move on to the server script:

server <- function(session, input, output) {

Because I want the plots to only render once the
user clicks the↪

actionButton, I need to move every interactive,
or reactive, element into↪

an eventReactive() function. eventReactive()
waits for something to "happen"↪

in order to let the reactive variables run. If
you don’t do that, then↪

when the user interacts with app, these reactive
variables will run↪

which we do not want.

Data only gets filtered once the user clicks on
the actionButton↪

filtered_data <- eventReactive(input$render_plot,
{↪

unemp %>%

242

7.4 Interactive web applications with {shiny}

filter(place_name %in%
input$place_name_selected)↪

})

The variable the user selects gets passed down
to the plot only once the user↪

clicks on the actionButton.
If you don’t do this, what will happen is that

the variable will then update the plot↪

even when the user does not click on the
actionButton↪

variable_selected <-
eventReactive(input$render_plot, {↪

input$variable_selected
})

The plot title only gets generated once the user
clicks on the actionButton↪

If you don’t do this, what will happen is that
the title of the plot will get↪

updated even when the user does not click on the
actionButton↪

plot_title <- eventReactive(input$render_plot, {
paste(variable_selected(), "for",

paste(input$place_name_selected, collapse =
", "))

↪

↪

})

output$unemp_plot <- renderPlot({

ggplot(data = filtered_data()) +
theme_minimal() +

243

7 Data products

Because the selected variable is a string,
we need to convert it to a symbol↪

using rlang::sym and evaluate it using !!.
This is because the aes() function↪

expects bare variable names, and not
strings.↪

Because this is something that developers
have to use often in shiny apps,↪

there is a version of aes() that works with
strings, called aes_string()↪

You can use both approaches interchangeably.
#geom_line(aes(year,

!!rlang::sym(variable_selected()), color =
place_name)) +

↪

↪

geom_line(aes_string("year",
variable_selected(), color =
"place_name")) +

↪

↪

labs(title = plot_title()) +
theme(legend.position = input$legend_position)

})

output$unemp_plot_g2r <- renderG2({

g2(data = filtered_data()) %>%
g2r’s asp() requires bare variable names
fig_line(asp(year,

!!rlang::sym(variable_selected()), color =
place_name)) %>%

↪

↪

For some reason, the title does not show...
subject(plot_title()) %>%
legend_color(position = input$legend_position)

244

7.4 Interactive web applications with {shiny}

})
}

What’s new here, is that I now must redefine the reactive ob-
jects in such a way that they only get run once the user clicks
the button. This is why every reactive object (but one, the
position of the legend) is now wrapped by eventReactive().
eventReactive() waits for a trigger, in this case the clicking of
the action button, to run the reactive object. eventReactive()
takes the action button ID as an input. I’ve also defined the plot
title as a reactive value, not only the dataset as before, because if
I didn’t do it, then the title of the plot would get updated as the
user would choose other communes, but the contents of the plot,
that depend on the data, would not get updated. To avoid the
title and the plot to get desynched, I need to also wrap it around
eventReactive(). You can see this behaviour by changing the
legend position. The legend position gets updated without the
user needing to click the button. This is because I have not
wrapped the legend position inside eventReactive().

Finally, I keep the {ggplot2} graph, but also remake it using
{g2r}, to illustrate how it works inside a Shiny app.

To conclude this section, we will take a look at one last app.
This app will allow users to do data aggregation on relatively
large dataset, so computations will take some time. The app
will illustrate how to best deal with this.

7.4.3 Basic optimization of Shiny apps

The app we will build now requires what is sometimes referred
to medium size data. Medium size data is data that is far from

245

7 Data products

being big data, but already big enough that handling it requires
some thought, especially in this scenario. What we want to do
is build an app that will allow users to do some aggregations
on this data. Because the size of the data is not trivial, these
computations will take some time to run. So we need to think
about certain strategies to avoid frustrating our users. The file
we will be using can be downloaded from here. We’re not going
to use the exact same data set though, I have prepared a smaller
version that will be more than enough for our purposes. But the
strategies that we are going to implement here will also work
for the original, much larger, dataset. You can get the smaller
version here. Uncompressed it’ll be a 2.4GB file. Not big data
in any sense, but big enough to be annoying to handle without
the use of some optimization strategies.

One such strategy is only letting the computations run once the
user gives the green light by clicking on an action button. This
is what we have seen in the previous example. The next obvious
strategy is to use packages that are optimized for speed. It turns
out that the functions we have seen until now, from packages
like {dplyr} and the like, are not the fastest. Their ease of use
and expressiveness come at a speed cost. So we will need to
switch to something faster. We will do the same to read in the
data.

This faster solution is the {arrow} package, which is an interface
to the Arrow software developed by Apache.

The final strategy is to enable caching in the app.

So first, install the {arrow} package by running install.packages("arrow").
This will compile libarrow from source on Linux and might
take some time, so perhaps go grab a coffee.

Before building the app, let me perform a very simple bench-
mark. The script below reads in the data, then performs some

246

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HG7NV7
https://mega.nz/file/l1IxHYIT#mZkeQOVpMc9XymMNtDY687sHEZHoIvDcUOm-4AwK6OI
https://arrow.apache.org/faq/

7.4 Interactive web applications with {shiny}

aggregations. This is done using standard {tidyverse} func-
tions, but also using {arrow}:

start_tidy <- Sys.time()
{vroom} is able to read in larger files than

{readr}↪

I could not get this file into R using
readr::read_csv↪

my RAM would get maxed out
air <- vroom::vroom("data/combined")

mean_dep_delay <- air |>
dplyr::group_by(Year, Month, DayofMonth) |>
dplyr::summarise(mean_delay = mean(DepDelay,
na.rm = TRUE))↪

end_tidy <- Sys.time()

time_tidy <- end_tidy - start_tidy

start_arrow <- Sys.time()
air <- arrow::open_dataset("data/combined", format
= "csv")↪

mean_dep_delay <- air |>
dplyr::group_by(Year, Month, DayofMonth) |>
dplyr::summarise(mean_delay = mean(DepDelay,
na.rm = TRUE))↪

end_arrow <- Sys.time()

end_tidy - start_tidy
end_arrow - start_arrow

247

7 Data products

The “tidy” approach took 17 seconds, while the arrow approach
took 6 seconds. This is an impressive improvement, but put
yourself in the shoes of a user who has to wait 6 seconds for
each query. That would get very annoying, very quickly. So the
other strategy that we will use is to provide some visual cue that
computations are running, and then we will go one step further
and use caching of results in the Shiny app.

But before we continue, you may be confused by the code above.
After all, I told you before that functions from {dplyr} and
the like were not the fastest, and yet, I am using them in the
arrow approach as well, and they now run almost 3 times as
fast. What’s going on? What’s happening here, is that the
air object that we read using arrow::open_dataset is not a
dataframe, but an arrow dataset. These are special, and work
in a different way. But that’s not what’s important: what’s
important is that the {dplyr} api can be used to work with
these arrow datasets. This means that functions from {dplyr}
change the way they work depending on the type of the object
their dealing with. If it’s a good old regular data frame, some
C++ code gets called to perform the computations. If it’s an
arrow dataset, libarrow and its black magic get called instead
to perform the computations. If you’re familiar with the concept
of polymorphism this is it (think of + in Python: 1+1 returns 2,
"a"+"b" returns "a+b". A different computation gets performed
depending on the type of the function’s inputs).

Let’s now build a basic version of the app, only using {arrow}
functions for speed. This is the global file:

library(arrow)
library(dplyr)
library(rlang)
library(DT)

248

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

7.4 Interactive web applications with {shiny}

air <- arrow::open_dataset("data/combined", format =
"csv")↪

The ui will be quite simple:

ui <- function(request){
fluidPage(

titlePanel("Air On Time data"),

sidebarLayout(

sidebarPanel(
selectizeInput("group_by_selected",

"Variables to group by:",↪

choices = c("Year", "Month",
"DayofMonth", "Origin",
"Dest"),

↪

↪

multiple = TRUE,
selected = c("Year",

"Month"),↪

options = list(
plugins =

list("remove_button"),↪

create = TRUE,
persist = FALSE # keep

created choices in
dropdown

↪

↪

)
),

hr(),

249

7 Data products

selectizeInput("var_to_average", "Select
variable to average by groups:",↪

choices = c("ArrDelay",
"DepDelay", "Distance"),↪

multiple = FALSE,
selected = "DepDelay",
),

hr(),
actionButton(inputId = "run_aggregation",

label = "Click here to run
aggregation"),↪

hr(),
bookmarkButton()

),

mainPanel(
DTOutput("result")

)
)

)

}

And finally the server:

server <- function(session, input, output) {

Numbers get crunched only when the user clicks
on the action button↪

grouped_data <-
eventReactive(input$run_aggregation, {↪

air %>%

250

7.4 Interactive web applications with {shiny}

group_by(!!!syms(input$group_by_selected)) %>%
summarise(result =

mean(!!sym(input$var_to_average),↪

na.rm = TRUE)) %>%
as.data.frame()

})

output$result <- renderDT({
grouped_data()

})

}

Because group_by() and mean() expect bare variable names,
I convert them from strings to symbols using rlang::syms()
and rlang::sym(). The difference between the two is that
rlang::syms() is required when a list of strings gets passed
down to the function (remember that the user must select sev-
eral variables to group by), and this is also why !!! are needed
(to unquote the list of symbols). Finally, the computed data
must be converted back to a data frame using as.data.frame().
This is actually when the computations happen. {arrow} col-
lects all the aggregations but does not perform anything until
absolutely required. Let’s see the app in action:

As you can see, in terms of User Experience (UX) this is quite
poor. When the user clicks on the button nothing seems to
be going on for several seconds, until the table appears. Then,
when the user changes some options and clicks again on the
action button, it looks like the app is crashing.

Let’s add some visual cues to indicate to the user that something
is happening when the button gets clicked. For this, we are going
to use the {shinycssloaders} package:

251

7 Data products

install.packages("shinycssloaders")

and simply change the ui to this (and don’t forget to load
{shinycssloaders} in the global script!):

ui <- function(request){
fluidPage(

titlePanel("Air On Time data"),

sidebarLayout(

sidebarPanel(
selectizeInput("group_by_selected",

"Variables to group by:",↪

choices = c("Year", "Month",
"DayofMonth", "Origin",
"Dest"),

↪

↪

multiple = TRUE,
selected = c("Year",

"Month"),↪

options = list(
plugins =

list("remove_button"),↪

create = TRUE,
persist = FALSE # keep

created choices in
dropdown

↪

↪

)
),

hr(),
selectizeInput("var_to_average", "Select

variable to average by groups:",↪

252

7.4 Interactive web applications with {shiny}

choices = c("ArrDelay",
"DepDelay", "Distance"),↪

multiple = FALSE,
selected = "DepDelay",
),

hr(),
actionButton(inputId = "run_aggregation",

label = "Click here to run
aggregation"),↪

hr(),
bookmarkButton()

),

mainPanel(
We add a tabsetPanel with two tabs. The

first tab show the plot made using
ggplot

↪

↪

the second tab shows the plot using g2r
DTOutput("result") |>
withSpinner()

)
)

)

}

The only difference with before is that now the DTOutput()
right at the end gets passed down to withSpinner(). There are
several spinners that you can choose, but let’s simply use the
default one. This is how the app looks now:

Now the user gets a visual cue that something is happening. This
makes waiting more bearable, but even better than waiting with

253

7 Data products

a spinner is no waiting at all. For this, we are going to enable
caching of results. There are several ways that you can cache
results inside your app. You can enable the cache on a per-
user and per-session basis, or only on a per-user basis. But I
think that in our case here, the ideal caching strategy is to keep
the cache persistent, and available across sessions. This means
that each computation done by any user will get cached and
available to any other user. In order to achieve this, you simply
have to install the {cachem} packages add the following lines to
the global script:

shinyOptions(cache =
cachem::cache_disk("./app-cache",↪

max_age =
Inf))↪

By setting the max_age argument to Inf, the cache will never
get pruned. The maximum size of the cache, by default is 1GB.
You can of course increase it.

Now, you must also edit the server file like so:

server <- function(session, input, output) {

Numbers get crunched only when the user clicks
on the action button↪

grouped_data <- reactive({
air %>%
group_by(!!!syms(input$group_by_selected)) %>%
summarise(result =

mean(!!sym(input$var_to_average),↪

na.rm = TRUE)) %>%
as.data.frame()

254

7.4 Interactive web applications with {shiny}

}) %>%
bindCache(input$group_by_selected,

input$var_to_average) %>%
bindEvent(input$run_aggregation)

output$result <- renderDT({
grouped_data()

})

}

We’ve had to change eventReactive() to reactive(), just like
in the app where we don’t use an action button to run com-
putations. Then, we pass the reactive object to bindCache().
bindCache() also takes the inputs as arguments. These are
used to generate cache keys to retrieve the correct objects from
cache. Finally, we pass all this to bindEvent(). This function
takes the input referencing the action button. This is how we
can now bind the computations to the button once again. Let’s
test our app now. You will notice that the first time we choose
certain options, the computations will take time, as before. But
if we perform the same computations again, then the results will
be shown instantly:

As you can see, once I go back to a computation that was done
in the past, the table appears instantly. At the end of the video
I open a terminal and navigate to the directory of the app, and
show you the cache. There are several .Rds objects, these are
the final data frames that get computed by the app. If the user
wants to rerun a previous computation, the correct data frame
gets retrieved, making it look like the computation happened
instantly, and with another added benefit: as discussed above,
the cache is persistent between sessions, so even if the user closes

255

7 Data products

the browser and comes back later, the cache is still there, and
other users will also benefit from the cache.

7.4.4 Deploying your shiny app

The easiest way is certainly to use shinyapps.io. I won’t go into
details, but you can read more about it here. You could also get
a Virtual Private Server on a website like Vultr or DigitalOcean.
When signing up with these services you get some free credit to
test things out. If you use my Digital Ocean referral link you
get 200USD to test the platform. This is more than enough
to get a basic VPS with Ubuntu on it. You can then try to
install everything needed to deploy Shiny apps from your VPS.
You could follow this guide to deploy from DigitalOcean, which
should generalize well to other services like Vultr. Doing this
will teach you a lot, and I would highly recommend you do it.

7.4.5 References

• The server function
• Using caching in Shiny to maximize performance
• Engineering Production-Grade Shiny Apps

7.5 How to build data products using
{targets}

We will now put everything together and create a {targets}
pipeline to build a data product from start to finish. Let’s go
back to one of the pipelines we wrote in Chapter 7. If you’re

256

https://shiny.rstudio.com/articles/shinyapps.html
https://vultr.com
https://www.digitalocean.com/
https://m.do.co/c/b68adc727710
https://www.marinedatascience.co/blog/2019/04/28/run-shiny-server-on-your-own-digitalocean-droplet-part-1/
https://mastering-shiny.org/basic-reactivity.html?q=input#the-server-function
https://shiny.rstudio.com/articles/caching.html
https://engineering-shiny.org/

7.5 How to build data products using {targets}

using RStudio, start a new project and make it renv-enabled
by checking the required checkbox. If you’re using another ed-
itor, start with an empty folder and run renv::init(). Now
create a new script with the following code (create the script
functions.R and put the get_data() function in it, as de-
scribed here):

library(targets)
library(myPackage)
library(dplyr)
library(ggplot2)
source("functions.R")

list(
tar_target(

unemp_data,
get_data()

),

tar_target(
lux_data,
clean_unemp(unemp_data,

place_name_of_interest =
"Luxembourg",↪

level_of_interest = "Country",
col_of_interest =

active_population)↪

),

tar_target(
canton_data,
clean_unemp(unemp_data,

level_of_interest = "Canton",

257

https://rap4mads.eu/07-targets.html#our-actual-first-pipeline

7 Data products

col_of_interest =
active_population)↪

),

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",
"Wiltz", "Esch/Alzette",
"Mersch"),

↪

↪

↪

col_of_interest =
active_population)↪

),

tar_target(
lux_plot,
make_plot(lux_data)

),

tar_target(
canton_plot,
make_plot(canton_data)

),

tar_target(
commune_plot,
make_plot(commune_data)

)

)

This pipeline reads in data, then filters data and produces some

258

7.5 How to build data products using {targets}

plots. In another version of this pipeline we wrote the plots to
disk. Now we will add them to a Quarto document, using the
tar_quarto() function that can be found in the {tarchetypes}
packages (so install it if this is not the case yet). {tarchetypes}
provides functions to define further types of targets, such as
tar_quarto() which makes it possible to render Quarto doc-
uments from a {targets} pipeline. But before rendering a
document, we need to write this document. This is what the
document could look like:

title: "Reading objects from a targets pipeline"
author: "Bruno Rodrigues"
date: today

This document loads three plots that were made using
a `{targets}` pipeline.↪

```{r}
targets::tar_read(lux_plot)
```

```{r}
targets::tar_read(canton_plot)
```

```{r}
targets::tar_read(commune_plot)
```

Here is what the final pipeline would look like (notice that
I’ve added library(quarto) to the list of packages getting

259

7 Data products

called):

library(targets)
library(tarchetypes)
library(myPackage)
library(dplyr)
library(ggplot2)
library(quarto)
source("functions.R")

list(

tar_target(
unemp_data,
get_data()

),

tar_target(
lux_data,
clean_unemp(unemp_data,

place_name_of_interest =
"Luxembourg",↪

level_of_interest = "Country",
col_of_interest = active_population)

),

tar_target(
canton_data,
clean_unemp(unemp_data,

level_of_interest = "Canton",
col_of_interest = active_population)

),

260

7.5 How to build data products using {targets}

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",
"Wiltz", "Esch/Alzette",
"Mersch"),

↪

↪

↪

col_of_interest = active_population)
),

tar_target(
lux_plot,
make_plot(lux_data)

),

tar_target(
canton_plot,
make_plot(canton_data)

),

tar_target(
commune_plot,
make_plot(commune_data)

),

tar_quarto(
my_doc,
path = "my_doc.qmd"

)

)

Make sure that this pipeline runs using tar_make(). If yes, and

261

7 Data products

you’re done with it, don’t forget to run renv::snapshot() to
save the projects dependencies in a lock file. Again, take a look
at the lock file to make extra sure that your package is correctly
being versioned. As a reminder, you should see something like
this:

"myPackage": {
"Package": "myPackage",
"Version": "0.1.0",
"Source": "GitHub",
"RemoteType": "github",
"RemoteHost": "api.github.com",
"RemoteRepo": "myPackage",
"RemoteUsername": "b-rodrigues",
"RemoteRef":
"e9d9129de3047c1ecce26d09dff429ec078d4dae",
"RemoteSha":
"e9d9129de3047c1ecce26d09dff429ec078d4dae",
"Hash": "4740b43847e10e012bad2b8a1a533433",
"Requirements": [
"dplyr",
"janitor",
"rlang"

]
},

What’s really important is that you find the “RemoteXXXX”
fields. We are now ready to push this project to github.com.
Don’t forget to first edit the .gitignore file and add the renv
folder in it. This is the folder that contains the downloaded
packages, and it can get quite big. It is better to not push
it. We are now done with building an almost 100% reproducible
pipeline! If your product is a Shiny app, you may want to put as
much calculations as possible in the {targets} pipelines. You

262

7.5 How to build data products using {targets}

can then use tar_load() or tar_read() inside the global.R
file.

263

265

8 Self-contained RAPs with Docker

8 Self-contained RAPs with
Docker

266

8.1 Introduction

What you’ll have learned by the end of the chapter: build
self-contained, truly reproducible analytical pipelines thanks to
Docker.

8.1 Introduction

As discussed in section 7.7, while {renv} is a great tool that
makes reproducibility quite simple, there are still some issues. In
order to tackle these issues, we are going to learn about Docker.
Docker is used to package software including all its dependencies,
making it easy to run/deploy anywhere. The idea is to not only
deliver the source code to our data products, but also include
it inside a complete package that contains not only R and the
required libraries to rebuild the data product, but also many
components of the underlying operating system itself, which will
usually be Ubuntu… which also means that if you’re familiar with
Ubuntu, you’re at an advantage.

For rebuilding this data product, a single command can be used
which will pull the Docker image from Docker Hub, start a con-
tainer, build the data product, and stop.

If you’ve never heard of Docker before, this chapter should give
you the very basic knowledge required to get started.

Let’s start by watching this very short video that introduces
Docker.

As a reminder, let’s state again what problems {renv} does
not allow to solve. Users will need to make sure themselves
that they’re running the pipeline with the same version of R,
(as recorded in the renv.lock file), the same operating system,
hope that {renv} will be able to install the packages (which
can unfortunately sometimes fail) and hope that the underlying

267

https://www.youtube.com/watch?v=-X3AeROGmOw

8 Self-contained RAPs with Docker

infrastructure (MRAN and CRAN) are up and running. In the
past, these issues were solved using virtual machines. The is-
sue with virtual machines is that you cannot work with them
programmatically. In a sense, Docker can be seen a lightweight
virtual machine running a Linux distribution (usually Ubuntu)
that you can interact with using the command line. This also
means then that familiarity with Linux distributions (and in
particular Ubuntu) will make using Docker easily. Thankfully,
there is a very large community of Docker users who also use R.
This community is organized as the Rocker Project and provides
a very large collection of Dockerfiles to get easily started. As
you saw in the video above, Dockerfiles are simple text files
that define a Docker image, from which you can start a con-
tainer.

8.2 Installing Docker

The first step is to install Docker. You’ll find the instructions for
Ubuntu here, for Windows here (read the system requirements
section as well!) and for macOS here (make sure to choose the
right version for the architecture of your Mac, if you have an M1
Mac use Mac with Apple silicon).

After installation, it might be a good idea to restart your com-
puter, if the installation wizard does not invite you to do so.
To check whether Docker was installed successfully, run the fol-
lowing command in a terminal (or on the desktop app on Win-
dows):

docker run --rm hello-world

This should print the following message:

268

https://rocker-project.org/
https://docs.docker.com/engine/install/ubuntu/#install-using-the-repository
https://docs.docker.com/desktop/install/windows-install/
https://docs.docker.com/desktop/install/mac-install/

8.2 Installing Docker

Hello from Docker!
This message shows that your installation appears to
be working correctly.

To generate this message, Docker took the following
steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image
from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from
that image which runs the

executable that produces the output you are
currently reading.

4. The Docker daemon streamed that output to the
Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an
Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a
free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

If you see this message, congratulations, you are ready to run
Docker. If you see an error message about permissions, this
means that something went wrong. If you’re running Linux,
make sure that your user is in the Docker group by running:

269

8 Self-contained RAPs with Docker

groups $USER

you should see your username and a list of groups that your
user belongs to. If a group called docker is not listed, then you
should add yourself to the group by following these steps.

8.3 The Rocker Project

The Rocker Project is instrumental for R users that want to
use Docker. The project provides a large list of images that are
ready to run with a single command. As an illustration, open a
terminal and paste the following line:

docker run --rm -e PASSWORD=yourpassword -p
8787:8787 rocker/rstudio

Once this stops running, go to http://localhost:8787/ and
enter rstudio as the username and yourpassword as the pass-
word. You should login to a RStudio instance: this is the web
interface of RStudio that allows you to work with R from a
server. In this case, the server is the Docker container running
the image. Yes, you’ve just pulled a Docker image containing
Ubuntu with a fully working installation of RStudio web!

(If you cannot connect to http://localhost:8787, try with the
following command:

docker run --rm -ti -d -e PASSWORD=yourpassword -p
8787:8787 --network="host" rocker/rstudio

)

Let’s open a new script and run the following lines:

270

https://docs.docker.com/engine/install/linux-postinstall/

8.3 The Rocker Project

data(mtcars)

summary(mtcars)

You can now stop the container (by pressing CTRL-C in the termi-
nal). Let’s now rerun the container… (with the same command
as before) you should realize that your script is gone! This is
the first lesson: whatever you do inside a container will disap-
pear once the container is stopped. This also means that if you
install the R packages that you need while the container is run-
ning, you will need to reinstall them every time. Thankfully, the
Rocker Project provides a list of images with many packages al-
ready available. For example to run R with the {tidyverse}
collection of packages already pre-installed, run the following
command:

docker run --rm -ti -e PASSWORD=yourpassword -p
8787:8787 rocker/tidyverse

If you compare it to the previous command, you see that
we have replaced rstudio with tidyverse. This is because
rocker/tidyverse references an image, hosted on Docker
Hub, that provides the latest version of R, RStudio server and
the packages from the {tidyverse}. You can find the image
hosted on Docker Hub here. There are many different images,
and we will be using the versioned images made specifically
for reproducibility. For now, however, let’s stick with the
tidyverse image, and let’s learn a bit more about some
specifics.

271

https://hub.docker.com/r/rocker/tidyverse

8 Self-contained RAPs with Docker

8.4 Docker essentials

You already know about running containers using docker run.
With the commands we ran before, your terminal will need to
stay open, or else, the container will stop. Starting now, we will
run Docker commands in the background. For this, we will use
the -d flag (d as in detach), so let’s stop the container one last
time with CTRL-C and rerun it using:

docker run --rm -d -e PASSWORD=yourpassword -p
8787:8787 rocker/tidyverse

(notice -d just after run). You can run several containers in
the background simultaneously. You can list running containers
with docker ps:

docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS
NAMES
c956fbeeebcb rocker/tidyverse "/init" 3
minutes ago Up 3 minutes 0.0.0.0:8787->8787/tcp,
:::8787->8787/tcp elastic_morse

The running container has the ID c956fbeeebcb. Also, the very
last column, shows the name of the running container. This is
a label that you can change. For now, take note of ID, because
we are going to stop the container:

docker stop c956fbeeebcb

After Docker is done stopping the running container, you can
check the running containers using docker ps again, but this
time no containers should get listed. Let’s also discuss the other
flags --rm, -e and -p. --rm removes the container once it’s

272

8.4 Docker essentials

stopped. Without this flag, we can restart the container and all
the data and preferences we saved will be restored. However,
this is dangerous because if the container gets removed, then
everything will get lost, forever. We are going to learn how
to deal with that later. -e allows you to provide environment
variables to the container, so in this case the $PASSWORD variable.
-p is for setting the port at which your app is going to get served.
Let’s now rerun the container, but by giving it a name:

docker run -d --name my_r --rm -e
PASSWORD=yourpassword -p 8787:8787 rocker/tidyverse

Notice the --name flag followed by the name we want to use,
my_r. We can now interact with this container using its name
instead of its ID. For example, let’s open an interactive bash
session. Run the following command:

docker exec -ti my_r bash

You are now inside a terminal session, inside the running con-
tainer! This can be useful for debugging purposes. It’s also
possible to start R in the terminal, simply replace bash by R in
the command above.

Finally, let’s solve the issue of our scripts disappearing. For this,
create a folder somewhere on your computer (host). Then, rerun
the container, but this time with this command:

docker run -d --name my_r --rm -e
PASSWORD=yourpassword -p 8787:8787 -v
/path/to/your/local/folder:/home/rstudio/scripts:rw
rocker/tidyverse

where /path/to/your/local/folder should be replaced to the
folder you created. You should now be able to save the scripts
inside the scripts/ folder from RStudio and they will appear
in the folder you created.

273

8 Self-contained RAPs with Docker

8.5 Making our own images and run
some code

We now know how to save files to our computer from Docker.
But as the container gets stopped (and removed because of –
rm) if we install R packages, we would need to reinstall them
each time. The solution is thus to create our own Docker image,
and as you will see, it is quite simple to get started. Create a
folder somewhere on your computer, and add a text file called
Dockerfile (without any extension). In this file add, the fol-
lowing lines:

FROM rocker/tidyverse

RUN R -e
"devtools::install_github('b-rodrigues/myPackage',
ref = 'e9d9129de3047c1ecce26d09dff429ec078d4dae')"

Every Dockerfile starts with a FROM statement. This means
that this Dockerfile will use the rocker/tidyverse image as
a starting point. Then, we will simply download the package
we’ve been developing together using a RUN statement, which
you’ve guessed it, runs a command. Then we need to build the
image. For this, run the following line:

docker build -t my_package .

This will build the image right in this folder and call it
my_package.

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM rocker/tidyverse
---> a838ee142831

274

8.5 Making our own images and run some code

Step 2/2 : RUN R -e
"devtools::install_github('b-rodrigues/myPackage',
ref = 'e9d9129de3047c1ecce26d09dff429ec078d4dae')"
---> Using cache
---> 17d5d3179293

Successfully built 17d5d3179293
Successfully tagged my_package:latest

By running docker images you should see all the images that
are on your PC (with running containers or not):

docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE
my_package latest 17d5d3179293 13
minutes ago 2.16GB
rocker/tidyverse latest a838ee142831 11 days
ago 2.15GB
rocker/rstudio latest d110bab4d154 11 days
ago 1.79GB
hello-world latest feb5d9fea6a5 13
months ago 13.3kB

You should see that each image takes up a lot of space: but this is
misleading. Each image that builds upon another does not dupli-
cate the same layers. So this means that our image, my_package,
only add the {myPackage} package to the rocker/tidyverse
image, which in turn only adds the {tidyverse} packages to
rocker/rstudio. This means unlike what is shown here, all
the images to not need 6GB of space, but only 2.16GB in total.
So let’s now make sure that every other container is stopped
(because we will run our container on the same port) and let’s
run our container using this command:

275

8 Self-contained RAPs with Docker

docker run --rm -d --name my_package_container -e
PASSWORD=yourpassword -p 8787:8787 my_package

You should now see {myPackage} available in the list of packages
in the RStudio pane. Let’s now go one step further. Let’s create
one plot from within Docker, and make it available to the person
running it. Let’s stop again our container:

docker stop my_package_container

Now, in the same folder where your Dockerfile resides, add the
following R script (save this inside my_graph.R):

library(ggplot2)
library(myPackage)

data("unemp")

canton_data <- clean_unemp(unemp,
level_of_interest =
"Canton",
col_of_interest =
active_population)

my_plot <- ggplot(canton_data) +
geom_col(
aes(
y = active_population,
x = year,
fill = place_name

)
) +
theme(legend.position = "bottom",

legend.title = element_blank())

276

8.5 Making our own images and run some code

ggsave("/home/rstudio/scripts/my_plot.pdf", my_plot)

This script loads the data, and saves it to the scripts folder (as
you see, this is a path inside of the Docker image). We will also
need to update the Dockerfile. Edit it to look like this:

FROM rocker/tidyverse

RUN R -e
"devtools::install_github('b-rodrigues/myPackage',
ref = 'e9d9129de3047c1ecce26d09dff429ec078d4dae')"

RUN mkdir /home/rstudio/graphs

COPY my_graph.R /home/rstudio/graphs/my_graph.R

CMD R -e "source('/home/rstudio/graphs/my_graph.R')"

We added three commands at the end; one to create a folder
(using mkdir) another to copy our script to this folder (so for this,
remember that you should put the R script that creates the plot
next to the Dockerfile) and finally an R command to source
(or run) the script we’ve just copied. Save the Dockerfile and
build it again:

docker build -t my_package .

Let’s now run our container with the following command (notice
that we do not use -p nor the -e flags anymore, because we’re
not interested in running RStudio in the browser anymore):

docker run --rm --name my_package_container -v
/path/to/your/local/folder:/home/rstudio/scripts:rw
my_package

277

8 Self-contained RAPs with Docker

After some seconds, you should see a PDF in the folder that you
set up. This is the output of the script! You probably see now
where this is going: we are going to define a {targets} pipeline
that will be run each time the container is run. But one problem
remains.

8.6 Reproducibility with Docker

Our Dockerfile, as it is now, is not suited for reproducibility.
This is because each time the image gets built, the latest version
of R and package will get pulled from the Internet. We need to
use a Dockerfile that builds exactly the same image, regardless
of when it gets built. Thankfully, the Rocker Project is here to
help. A series of Dockerfiles are available that:

• always use the exact same version of R;
• a frozen CRAN repository will be used to pull the pack-

ages;
• a long term support of Ubuntu is used as a base image.

You can read about it more here. As I’m writing this, the latest
stable image uses R v4.2.1 on Ubuntu 20.04. The latest image,
based on Ubuntu 22.04 and which uses the latest version of R
(v4.2.2) still uses the default CRAN repository, not a frozen one.
So for our purposes, we will be using the rocker/r-ver:4.2.1
image, which you can find here. What’s quite important, is to
check that the CRAN mirror is frozen. Look for the line in the
Dockerfile that starts with ENV CRAN... and you should see
this:

278

https://github.com/rocker-org/rocker-versioned2/wiki/Versions
https://hub.docker.com/layers/rocker/r-ver/4.2.1/images/sha256-3636493af7028d899a6598ee4aabe70d231fb0ff60f61a70f8ea0ea24a51c3e6?context=explore

8.6 Reproducibility with Docker

As you can see in the screenshot, we see that the CRAN mirror
is set to the 28 of October 2022. Let’s now edit our Dockerfile
like so:

FROM rocker/r-ver:4.2.1

RUN R -e "install.packages(c('devtools',
'ggplot2'))"

279

8 Self-contained RAPs with Docker

RUN R -e
"devtools::install_github('b-rodrigues/myPackage',
ref = 'e9d9129de3047c1ecce26d09dff429ec078d4dae')"

RUN mkdir /home/graphs

COPY my_graph.R /home/graphs/my_graph.R

CMD R -e "source('/home/graphs/my_graph.R')"

As you can see, we’ve changed to first line to rocker/r-ver:4.2.1,
added a line to install the required packages, and we’ve re-
moved rstudio from the paths in the other commands. This is
because r-ver does not launch an RStudio session in browser,
so there’s no rstudio user. Before building the image, you
should also update the script that creates the plot. This
is because in the last line of our script, we save the plot
to "/home/rstudio/scripts/my_plot.pdf", but remember,
there’s no rstudio user. So remove this from the ggsave()
function. Also, add another line to the script, right at the
bottom:

writeLines(capture.output(sessionInfo()),
"/home/scripts/sessionInfo.txt")

so the script finally looks like this:

library(ggplot2)
library(myPackage)

data("unemp")

canton_data <- clean_unemp(unemp,
level_of_interest =
"Canton",

280

8.6 Reproducibility with Docker

col_of_interest =
active_population)

my_plot <- ggplot(canton_data) +
geom_col(
aes(
y = active_population,
x = year,
fill = place_name

)
) +
theme(legend.position = "bottom",

legend.title = element_blank())

ggsave("/home/scripts/my_plot.pdf", my_plot)

writeLines(capture.output(sessionInfo()),
"/home/scripts/sessionInfo.txt")

Now, build this image using:

docker build -t my_package .

and this will run R and install the packages. This should take
some time, because r-ver images do not come with any packages
preinstalled. Once this is done, we can run a container from this
image using:

docker run --rm --name my_package_container -v
/path/to/your/local/folder:/home/scripts:rw
my_package

You should see two files now: the plot, and a sessionInfo.txt
file. Open this file, and you should see the following:

281

8 Self-contained RAPs with Docker

R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.5 LTS

This confirms that the code ran indeed on R 4.2.1 under Ubuntu
20.04.5 LTS. You should also see that the {ggplot2} version
used is {ggplot2} version 3.3.6, which is older than the version
you could get now (as of November 2022), which is 3.4.0.

We now have all the ingredients and basic knowledge to build a
fully reproducible pipeline.

8.7 Building a truly reproducible pipeline

Ok so we are almost there; we now know how to run code in an
environment that is completely stable, so our results are 100%
reproducible. However, there are still some things that we can
learn in order to make our pipeline even better. First of all, we
can make it run faster by creating an image that has already
all the packages that we need installed. This way, whenever we
will need to build it, no packages will need to be installed. We
will also put this image on Docker Hub, so in the future, people
that want to run our pipeline can do so by pulling the pre-built
image from Docker, instead of having to rebuild it using the
Dockerfile. In order to get an image on Docker Hub, you first
need to create an account there. Once logged in, you can click
on Create repository:

282

https://hub.docker.com/

8.7 Building a truly reproducible pipeline

You can then give a name to this repository. Let’s now create
an image that we will push. Let’s restart from the Dockerfile
that we used, and add a bunch of stuff:

FROM rocker/r-ver:4.2.1

RUN apt-get update && apt-get install -y \
libglpk-dev \
libxml2-dev \
libcairo2-dev \

283

8 Self-contained RAPs with Docker

libgit2-dev \
default-libmysqlclient-dev \
libpq-dev \
libsasl2-dev \
libsqlite3-dev \
libssh2-1-dev \
libxtst6 \
libcurl4-openssl-dev \
libharfbuzz-dev \
libfribidi-dev \
libfreetype6-dev \
libpng-dev \
libtiff5-dev \
libjpeg-dev \
unixodbc-dev \
wget

RUN wget
https://github.com/quarto-dev/quarto-cli/releases/download/v1.2.269/quarto-1.2.269-linux-amd64.deb
-O /home/quarto.deb
RUN apt-get install --yes /home/quarto.deb
RUN rm /home/quarto.deb

RUN R -e "install.packages(c('devtools',
'tidyverse', 'janitor', \

'shiny', 'targets', 'tarchetypes', \
'quarto', 'shiny', 'testthat', \
'usethis', 'rio'))"

RUN R -e
"devtools::install_github('b-rodrigues/myPackage',
ref = 'e9d9129de3047c1ecce26d09dff429ec078d4dae')"

284

8.7 Building a truly reproducible pipeline

CMD ["R"]

This Dockerfile starts off with r-ver:4.2.1 and adds the de-
pendencies that we will need for our pipelines. Then, I install
development libraries, these are required to run the R packages
(maybe not all of them though). I found the list here; this is
a script that gets used by some of the Dockerfiles provided
by the Rocker Project. I only copied the parts I needed. Then
I download the Quarto installer for Ubuntu, and install it. Fi-
nally I install the packages for R, as well as the package we’ve
developed together. This Dockerfile should not look too intim-
idating IF you’re familiar with Ubuntu. If not… well this is why
I said in the intro that familiarity with Ubuntu would be help-
ful. Now you probably see why Rocker is so useful; if you start
from an rstudio image all of these dependencies come already
installed. But because we’re using an image made specifically
for reproducibility, only the frozen repos were set up, which is
why I had to add all of this manually. But no worries, you can
now use this Dockerfile as a reference.

Anyways, we can now build this image using:

docker build -t r421_rap .

And now we need to wait for the process to be done. Once it’s
finished, we can run it using:

docker run --rm -ti --name r421_rap_container
r421_rap

(notice the -ti argument here; this is needed because we want to
have an interactive session with R opened, if you omit this flag,
R will get launched, but then immediately close). We can test it
by loading some packages and see that everything is alright.

285

https://github.com/rocker-org/rocker-versioned2/blob/master/scripts/install_tidyverse.sh

8 Self-contained RAPs with Docker

Let’s now get this image on Dockerhub; this way, we can pull
it instead of having to build it in the future. First logging to
Docker Hub from the terminal:

docker login

You should then enter your username and password. We are now
ready to push, so check the image id using docker images:

docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
r421_rap latest 864350bf1143 5
minutes ago 1.98GB

Tag the image, in this case the tag I’ve used is version1:

docker tag 864350bf1143
your_username_on_docker_hub/r421_rap:version1

And now I can push it, so that everyone can use it:

docker push brodriguesco/r421_rap:version1

We can now use this as a base for our pipelines! Let’s now create
a new Dockerfile that will use this image as a base and run
the plot from before:

FROM brodriguesco/r421_rap:version1

RUN mkdir /home/graphs

COPY my_graph.R /home/graphs/my_graph.R

CMD R -e "source('/home/graphs/my_graph.R')"

286

8.7 Building a truly reproducible pipeline

save this Dockerfile in a new folder, and don’t forget to add
the my_graph.R script with it. You can now build the image
using:

docker build -t my_pipeline .

You should see this:

Sending build context to Docker daemon 3.584kB
Step 1/4 : FROM brodriguesco/r421_rap:version1
version1: Pulling from brodriguesco/r421_rap
eaead16dc43b: Pull complete

As you can see, now Docker is pulling the image I’ve uploaded…
and what’s great is that this image already contains the correct
versions of the required packages and R.

Before continuing now, let’s make something very clear: the
image that I made available on Docker Hub is prebuilt, which
means that anyone building a project on top of it, will not have
to rebuild it. This means also, that in theory, there would
be no need to create an image built on top of an image like
rocker/r-ver:4.2.1 with frozen repositories. Because most
users of the brodriguesco/r421_rap image would have no need
to rebuild it. However, in cases where users would need to
rebuild it, it is best practice to use such a stable image as
rocker/r-ver:4.2.1. This makes sure that if the image gets
rebuilt in the future, then it still pulls the exact same R and
packages versions as today.

Ok, so now to run the pipeline this line will do the job:

docker run --rm --name my_pipeline_container -v
/home/cbrunos/docker_folder:/home/scripts:rw
my_pipeline

287

8 Self-contained RAPs with Docker

So basically, all you need for your project to be reproducible is
a Github repo, where you make the Dockerfile available, as
well as the required scripts, and give some basic instructions in
a Readme.

To conclude this section, take a look at this repository. This
repository defines in three files a pipeline that uses Docker for
reproducibility:

• A Dockerfile;
• _targets.R defining a {targets} pipeline;
• functions.R which includes needed functions for the

pipeline.

Try to run the pipeline, and study the different files. You should
recognize the commands used in the Dockerfile.

Now it’s your turn to build reproducible pipelines!

8.8 One last thing

It should be noted that you can also use {renv} in combination
with Docker. What you could do is copy an {renv} lockfile into
Docker, and restore the packages with {renv}. You could then
push this image, which would contain every package, to Docker
Hub, and then provide this image to your future users instead.
This way, you wouldn’t need to use a base image with frozen
CRAN repos as we did. That’s up to you.

If you want an example of this, look here.

288

https://github.com/b-rodrigues/dockerized_pipeline_demo/tree/main
https://github.com/b-rodrigues/rpi_docker_rap

8.9 Further reading

8.9 Further reading

• https://www.statworx.com/content-hub/blog/wie-du-ein-
r-skript-in-docker-ausfuehrst/ (in German, English trans-
lation: https://www.r-bloggers.com/2019/02/running-
your-r-script-in-docker/)

• https://colinfay.me/docker-r-reproducibility/
• https://jsta.github.io/r-docker-tutorial/
• http://haines-lab.com/post/2022-01-23-automating-

computational-reproducibility-with-r-using-renv-docker-
and-github-actions/

289

291

9 Intro to CI/CD with Github Actions

9 Intro to CI/CD with
Github Actions

292

9.1 Introduction

What you’ll have learned by the end of the chapter: very basic
knowledge of Github Actions, but enough to run your RAP in
the cloud.

9.1 Introduction

We are almost at the end; actually, we could have stopped at
the end of the previous chapter. We have reached our goal;
we are able to run pipeline in a 100% reproducible way. How-
ever, this requires some manual steps. And maybe that’s not
a problem; if your image is done, and users only need to pull
it and run the container, that’s not really a big problem. But
you should keep in mind that manual steps don’t scale. Let’s
imagine another context; let’s suppose that you are part of a
company and that you are part of a team that needs to quickly
ship products to clients. Maybe several people contribute to the
product using an internal version control solution (like a Git-
lab instance that is deployed on the premises of your company).
Maybe you even need to work on several products in the same
day; you (and your teammates) should only be focusing writing
code (and Dockerfiles)… your time and resources cannot get
clogged by building images (which depending on what you’re
working on, can take quite some time). So ideally, we would
want to automate this step. That is what we are going to learn
in this chapter.

This chapter will introduce you to the basic ideas of CI/CD
(Continuous Integration and Continuous Deployment/Delivery)
and DevOps with Github Actions. Because we’re using Git to
trigger all the events and automate the whole pipeline, this can
also be referred to as GitOps. What’s Dev(Git)Ops? I think

293

9 Intro to CI/CD with Github Actions

that the Atlassian page on DevOps makes a good job of ex-
plaining it. The bottom line is that DevOps makes it easy for
developers to focus on coding, and makes it easy for them to ship
data products. The core IT team provides the required infras-
tructure and tools to make this possible. GitOps is a variant of
DevOps where the definition of the infrastructure is versioned,
and can be changed by editing simple text files. Through events,
such as pushing to the repository, new images can be built, or
containers executed. Data products can then also be redeployed
automatically. All the steps we’ve been doing manually, with
one simple push! It’s also possible, in the context of package de-
velopment, to execute unit tests when code gets pushed to repo,
or get documentation and vignettes compiled. This also means
that you could be developing on a very thin client with only a
text editor and git installed. Pushing to Github would then ex-
ecute everything needed to have a package ready for sharing.

So our goal here is, in short, to do exactly the same as what
we have been doing on our computer (so build an image, run a
container, and get back 3 plots), but on Github.

9.2 Getting your repo ready for Github
Actions

You should see an “Actions” tab on top of any Github repo:

294

https://www.atlassian.com/devops

9.2 Getting your repo ready for Github Actions

This will open a new view where you can select a lot of available,
ready to use actions. Shop around for a bit, and choose the
right one (depending on what you want to do). You should
know that there is a very nice repository with many actions for
R. Once you’re done choosing an action, a new view in which
you can edit a file will open. This file will have the name of the
chosen action, and have the .yml extension. This file will be
automatically added to your repository, in the following path:
.github/workflows.

Let’s take a look at such a workflow file:

name: Hello world
on: [push]
jobs:

say-hello:
runs-on: ubuntu-latest
steps:
- run: echo "Hello from Github Actions!"
- run: echo "This command is running from an
Ubuntu VM each time you push."

Let’s study this workflow definition line by line:

name: Hello world

Simply gives a name to the workflow.

on: [push]

When should this workflow be triggered? Here, whenever some-
thing gets pushed.

jobs:

What is the actual things that should happen? This defines a
list of actions.

295

https://github.com/r-lib/actions
https://github.com/r-lib/actions

9 Intro to CI/CD with Github Actions

say-hello:

This defines the say-hello job.

runs-on: ubuntu-latest

This job should run on an Ubuntu VM. You can also run jobs on
Windows or macOS VMs, but this uses more compute minutes
than a Linux VM (you have 2000 compute minutes for free per
month).

steps:

What are the different steps of the job?

- run: echo "Hello from Github Actions!"

First, run the command echo "Hello from Github
Actions!". This commands runs inside the VM. Then,
run this next command:

- run: echo "This command is running from an
Ubuntu VM each time you push."

Let’s push, and see what happens on github.com:

If we take a look at the commit we just pushed, we see this
yellow dot next to the commit name. This means that an action
is running. We can then take a look at the output of the job,
and see that our commands, defined with the run statements in
the workflow file, succeeded and echoed what we asked them.

So, the next step is running our Docker image and getting back
our plots. This next example can be found in this repository.

This is what our workflow file looks like:

296

https://github.com/b-rodrigues/dockerized_pipeline_demo

9.2 Getting your repo ready for Github Actions

name: Reproducible pipeline

on:
push:
branches: ["main"]

pull_request:
branches: ["main"]

jobs:

build:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v3
- name: Build the Docker image
run: docker build -t my-image-name .

- name: Docker Run Action
run: docker run --rm --name
my_pipeline_container -v
/github/workspace/fig/:/home/graphs/:rw
my-image-name

- uses: actions/upload-artifact@v3
with:

name: my-figures
path: /github/workspace/fig/

For now, let’s focus on the run statements, because these should
be familiar:

run: docker build -t my-image-name .

and:

297

9 Intro to CI/CD with Github Actions

run: docker run --rm --name my_pipeline_container -v
/github/workspace/fig/:/home/graphs/:rw
my-image-name

The only new thing here, is that the path has been changed
to /github/workspace/. This is the home directory of your
repository, so to speak. Now there’s the uses keyword that’s
new:

uses: actions/checkout@v3

This action checkouts your repository inside the VM, so the files
in the repo are available inside the VM. Then, there’s this action
here:

- uses: actions/upload-artifact@v3
with:
name: my-figures
path: /github/workspace/fig/

This action takes what’s inside /github/workspace/fig/
(which will be the output of our pipeline) and makes the
contents available as so-called “artifacts”. Artifacts are the
outputs of your workflow. In our case, as stated, the output of
the pipeline. So let’s run this by pushing a change, and let’s
take a look at these artifacts!

As you can see from the video above, a zip file is now available
and can be downloaded. This zip contains our plots! It is thus
possible to rerun our workflow in the cloud. This has the advan-
tage that we can now focus on simply changing the code, and
not have to bother with boring manual steps. For example, let’s
change this target in the _targets.R file:

298

9.2 Getting your repo ready for Github Actions

tar_target(
commune_data,
clean_unemp(unemp_data,

place_name_of_interest =
c("Luxembourg", "Dippach",

"Wiltz",
"Esch/Alzette",
"Mersch",
"Dudelange"),

col_of_interest = active_population)
)

I’ve added “Dudelange” to the list of communes to plot. Let me
push this change to the repo now, and let’s take a look at the
artifacts. The video below summarises the process:

As you can see in the video, the _targets.R script was changed,
and the changes pushed to Github. This triggered the action
we’ve defined before. The plots (artifacts) get refreshed, and we
can download them. We see then that Dudelange was added in
the communes.png plot!

It is also possible to “deploy” the plots directly to another
branch, and do much, much more. I just wanted to give you
a little taste of Github Actions (and more generally GitOps).
The possibilities are virtually limitless, and I still can’t get over
the fact that Github Actions is free (well, up to 2000 compute
minutes and 500MB storage per month).

299

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

9 Intro to CI/CD with Github Actions

9.3 Building a Docker image and
pushing it to a registry

It is also possible to build a Docker image and have it made
available on an image registry. You can see how this works on
this repository. This images can then be used as a base for other
RAPs, as in this repository. Why do this? Well because of “sep-
aration of concerns”. You could have a repository which builds
in image containing your development environment: this could
be an image with a specific version of R and R packages. And
then have as many repositories as projects that run RAPs using
that development environment image as a basis. Simply add the
project-specific packages that you need for each project.

9.4 Running a pipeline straight from
Github Actions

Using Docker on Github Actions has the advantage that you
can use the same image to develop locally on your computer,
and then also on CI. However, you could also run the pipeline
straight from a Github Actions runner, but it’ll take some effort
to set up the environment on CI. Take a look at the example
from this repository.

The yaml file used in this action (which you can find here) was
generated by running targets::tar_github_actions() and
was then modified further, mostly to add the required devel-
opment libraries to compile the needed R packages (under the
Install Linux system dependencies step).

300

https://github.com/b-rodrigues/ga_demo
https://github.com/b-rodrigues/ga_demo_rap/tree/main
https://github.com/rap4all/housing/tree/gitops-pipeline
https://github.com/rap4all/housing/tree/gitops-pipeline
https://github.com/rap4all/housing/blob/gitops-pipeline/.github/workflows/targets.yaml

9.4 Running a pipeline straight from Github Actions

This action takes advantage of the included Github Actions
cache to backup the targets from the pipeline, so they can also
get skipped with subsequent runs:

This can also be achieved with Docker by mounting volumes,
but requires more manual setup.

Another difference with Docker is that the outputs are not saved
as an artifact, but instead get pushed to the targets-runs
branch:

301

9 Intro to CI/CD with Github Actions

9.5 Running unit tests on Github Actions

Setting up your project as a package (or at least, the parts of
your project that can be reused for others) as a package also has
the advantage that it becomes very easy to run unit tests on CI.
See for example the {myPackage} package that we developed

302

9.5 Running unit tests on Github Actions

together, in particular this file. This action runs on each push
and pull request on Windows, Ubuntu and macOS:

on:
push:
branches: ["main"]

pull_request:
branches: ["main"]

jobs:
rcmdcheck:
runs-on: ${{ matrix.os }}
strategy:
matrix:

os: [ubuntu-latest, windows-latest,
macos-latest]

Several steps are executed, all using pre-defined actions from the
r-lib project:

steps:
- uses: actions/checkout@v4
- uses: r-lib/actions/setup-r@v2
- uses: r-lib/actions/setup-r-dependencies@v2
with:

extra-packages: any::rcmdcheck
needs: check

- uses: r-lib/actions/check-r-package@v2

An action such as r-lib/actions/setup-r@v2 will install R
on any of the supported operating systems without requiring
any configuration from you. If you didn’t use such an action,
you would need to define three separate actions: one that
would be executed on Windows, on Ubuntu and on macOS.

303

https://github.com/b-rodrigues/myPackage/blob/main/.github/workflows/rcmdcheck.yaml

9 Intro to CI/CD with Github Actions

Each of these operating-specific actions would install R in their
operating-specific way.

Check out the workflow results to see how the package could be
improved here.

9.6 Further reading

• http://haines-lab.com/post/2022-01-23-automating-
computational-reproducibility-with-r-using-renv-docker-
and-github-actions/

• https://orchid00.github.io/actions_sandbox/
• https://www.petefreitag.com/item/903.cfm
• https://dev.to/mihinduranasinghe/using-docker-containers-

in-jobs-github-actions-3eof

304

https://github.com/b-rodrigues/myPackage/actions/runs/12348361696

305

10 Reproducibility with Nix

10 Reproducibility with Nix

306

10.1 The Nix package manager

10.1 The Nix package manager

Nix is a package manager that can be used to build completely
reproducible development environments. These environments
can be used for interactive data analysis or running pipelines in
a CI/CD environment.

If you’re familiar with the Ubuntu Linux distribution, you likely
have used apt-get to install software. On macOS, you may have
used homebrew for similar purposes. Nix functions in a similar
way, but has many advantages over classic package managers.
The main advantage of Nix, at least for our purposes, is that its
repository of software is huge. As of writing, it contains more
than 80.000 packages, and the entirety of CRAN and Biocon-
ductor is available through Nix’s repositories. This means that
using Nix, it is possible to install not only R, but also all the
packages required for your project. The obvious question is why
use Nix instead of simply installing R and R packages as usual.
The answer is that Nix makes sure to install every dependency
of any package, up to required system libraries. For example,
the {xlsx} package requires the Java programming language
to be installed on your computer to successfully install. This
can be difficult to achieve, and {xlsx} bullied many R develop-
ers throughout the years (especially those using a Linux distri-
bution, sudo R CMD javareconf still plagues my nightmares).
But with Nix, it suffices to declare that we want the {xlsx}
package for our project, and Nix figures out automatically that
Java is required and installs and configures it. It all just happens
without any required intervention from the user. The second ad-
vantage of Nix is that it is possible to pin a certain revision of
the Nix packages’ repository (called nixpkgs) for our project.
Pinning a revision ensures that every package that Nix installs
will always be at exactly the same versions, regardless of when
in the future the packages get installed.

307

10 Reproducibility with Nix

With Nix, it is essentially possible to replace {renv} and Docker
combined, or if you’re using mainly Python, you can replace
conda or requirements.txt files. If you need other tools or
languages like Python or Julia, this can also be done easily. Nix
is available for Linux, macOS and Windows (via WSL2). Im-
portant remark: since using Nix on Windows must go through
WSL, when we refer to “Linux” in the context of Nix, this in-
cludes Windows by default as well. It is also possible to build
multi-language environments, containing R and Python, a La-
TeX distribution and packages and so on.

10.2 The Nix programming language

Nix is not just useful because it is possible to install many pack-
ages and even install older packages, but also because it comes
with a complete functional programming language. This pro-
gramming language is used to write expressions, and these ex-
pressions in turn are used to build software. Essentially, when
you install a package using Nix, an expression gets downloaded
from the Nix package repository (more on that in the next sec-
tion), and it gets evaluated by the Nix package manager. This
expression contains a so-called derivation. A derivation defines
a build: some inputs, some commands, and then an output.
Most of the time, a derivation downloads source code, builds
the software from the source and then outputs a compiled bi-
nary. Derivations are extremely flexible, and you could write
a derivation to build a complete environment and then build a
complete reproducible pipeline. The output could be any of the
discussed data products.

Learning the Nix programming language is a good idea if you
want to contribute to the Nix package repository, but you might

308

10.3 The Nix package repository

not have to learn it in-depth if you simply wish to use it to build
reproducible environments, as we will learn now. If you wish to
learn about the programming language, I highly recommend a
tour of Nix1.

10.3 The Nix package repository

So, there’s the Nix package manager, the Nix programming lan-
guage and the Nix package repository (henceforth nixpkgs). To
look for packages click here2. The source code of all the pack-
ages (so the whole set of Nix expressions) can be found on this
Github repository3. For example, here4 is the Nix expression
that contains the derivation to build quarto. As you can see,
the derivation uses the the pre-built Quarto binaries instead of
building it from source. Adding packages to nixpkgs (or updat-
ing them) can be done by opening pull requests. For example,
here5 is a pull request to make Quarto available to all platforms
(before this PR Quarto was only available for Linux). PRs get
reviewed and approuved by maintainers that also have the right
to merge the PR into master. Once merged, the new or updated
package is available for download. Because nixpkgs is a “just”
Github repository, it is possible to use a specific commit hash
to install the packages as they were at a specific point in time.
For example, if you use this commit, 7c9cc5a6e, you’ll get the
packages as of the 19th of October 2023, but if you used this one
instead: 976fa3369, you’ll get packages from the 19th of August

1https://nixcloud.io/tour/?id=introduction/nix
2https://search.nixos.org/packages
3https://github.com/NixOS/nixpkgs
4https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/quarto/default.nix
5https://github.com/NixOS/nixpkgs/pull/259443

309

https://nixcloud.io/tour/?id=introduction/nix
https://nixcloud.io/tour/?id=introduction/nix
https://search.nixos.org/packages
https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs
https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/quarto/default.nix
https://github.com/NixOS/nixpkgs/pull/259443

10 Reproducibility with Nix

2023. Using specific hashes is called “pinning” and you can read
more about it here. We will make extensive use of pinning.

10.4 The NixOS operating system,
Docker and Github Actions

NixOS is a Linux distribution that uses the Nix package man-
ager as its package manager. I won’t go into detail here, but
you should know it exists. What’s perhaps more interesting for
our purposes is to use Nix within Docker. Because Nix can be
installed as any other tool, you could very well build a Docker
image that starts by installing Nix, and then uses Nix to in-
stall, in a reproducible manner, all the tools you need for your
project.

There are also a series of Github Actions that you can use to
install Nix on runners and build development environments. We
will also look that.

10.5 A first Nix expression

The following expression is the one that defines the development
environment to build this book:

let
pkgs = import (fetchTarball
"https://github.com/NixOS/nixpkgs/archive/976fa3369d722e76f37c77493d99829540d43845.tar.gz")
{};
rpkgs = builtins.attrValues {

310

https://nixos.wiki/wiki/FAQ/Pinning_Nixpkgs

10.5 A first Nix expression

inherit (pkgs.rPackages) quarto Ecdat devtools
janitor plm pwt9 rio targets tarchetypes testthat
tidyverse usethis formatR;

};
tex = (pkgs.texlive.combine {
inherit (pkgs.texlive) scheme-small amsmath framed
fvextra environ fontawesome5 orcidlink pdfcol
tcolorbox tikzfill;

});
system_packages = builtins.attrValues {
inherit (pkgs) R glibcLocalesUtf8 quarto;

};
in
pkgs.mkShell {
LOCALE_ARCHIVE = if pkgs.system ==
"x86_64-linux" then
"${pkgs.glibcLocalesUtf8}/lib/locale/locale-archive"
else "";
LANG = "en_US.UTF-8";
LC_ALL = "en_US.UTF-8";
LC_TIME = "en_US.UTF-8";
LC_MONETARY = "en_US.UTF-8";
LC_PAPER = "en_US.UTF-8";
LC_MEASUREMENT = "en_US.UTF-8";

buildInputs = [rpkgs tex system_packages];

}

The first line imports a specfic hash of nixpkgs (pinning):

pkgs = import (fetchTarball
"https://github.com/NixOS/nixpkgs/archive/976fa3369d722e76f37c77493d99829540d43845.tar.gz")
{};

311

10 Reproducibility with Nix

Then, I define the set of R packages that we require:

rpkgs = builtins.attrValues {
inherit (pkgs.rPackages) quarto Ecdat devtools
janitor plm pwt9 rio targets tarchetypes testthat
tidyverse usethis formatR;

};

I then do something similar for LaTeX packages:

tex = (pkgs.texlive.combine {
inherit (pkgs.texlive) scheme-small amsmath framed
fvextra environ fontawesome5 orcidlink pdfcol
tcolorbox tikzfill;

});

Finally, I define the set of “system” packages, so the R language
itself, and Quarto (and glibcLocalesUtf8 to set the locale vari-
ables to utf-8):

system_packages = builtins.attrValues {
inherit (pkgs) R glibcLocalesUtf8 quarto;

};

Finally, all these definitions are used to define a shell:

in
pkgs.mkShell {

LOCALE_ARCHIVE = if pkgs.system == "x86_64-linux"
then
"${pkgs.glibcLocalesUtf8}/lib/locale/locale-archive"
else "";
LANG = "en_US.UTF-8";
LC_ALL = "en_US.UTF-8";
LC_TIME = "en_US.UTF-8";
LC_MONETARY = "en_US.UTF-8";

312

10.6 The {rix} package

LC_PAPER = "en_US.UTF-8";
LC_MEASUREMENT = "en_US.UTF-8";

buildInputs = [rpkgs tex system_packages];
}

In this block, a Nix shell environment is defined using
pkgs.mkShell. The LOCALE_ARCHIVE variable is con-
ditionally set based on the system architecture. Sev-
eral environment variables (LANG, LC_ALL, LC_TIME,
LC_MONETARY, LC_PAPER, and LC_MEASUREMENT)
are set to “en_US.UTF-8”. The buildInputs attribute specifies
the list of inputs needed for this shell environment, which
includes the three sets defined above: R packages (rpkgs), TeX
packages (tex), and system packages (system_packages).

This Nix expression defines a development environment with spe-
cific R and TeX packages, system packages, and locale settings.
When this expression is evaluated using Nix, it will generate a
shell environment that includes all the specified dependencies,
allowing you to work with R and TeX in a controlled and repro-
ducible environment.

This environment can be built using the nix-build command,
and users can then drop into that shell using nix-shell.

Writing these Nix expressions is not easy, and there is a lot
of boilerplate code. To simplify the process of writing these
expressions, a package I wrote, called {rix}, can help you.

10.6 The {rix} package

{rix} is an R package that provides functions to help you write
Nix expressions: these expressions can then be used by the Nix

313

10 Reproducibility with Nix

package manager to build completely reproducible development
environments. These environments can be used for interactive
data analysis or running pipelines in a CI/CD environment. En-
vironments built with Nix contain R and all the required pack-
ages that you need for your project: there are currently more
than 80.000 pieces of software available through the Nix pack-
age manager, including the entirety of CRAN and Bioconductor
packages. The Nix package manager is extremely powerful: not
only it handles all the dependencies of any package extremely
well, it is also possible with it to reproduce environments con-
taining old releases of software. It is thus possible to build envi-
ronments that contain R version 4.0.0 (for example) to run an
old project originally developed on that version of R.

First, you need to install the Nix package manager on your sys-
tem. For this, we are going to use the installer from Determinate
Systems. Simply run the following command in a terminal:

curl --proto '=https' --tlsv1.2 -sSf -L
https://install.determinate.systems/nix | sh -s --
install

If you wish to uninstall Nix, run the same command. Then, if
you already have R installed on your system, you can install the
{rix} package using:

install.packages("rix")

From there, you can start a new R session and try out {rix}
like so:

rix(r_ver = "latest",
r_pkgs = c("dplyr", "ggplot2"),
system_pkgs = NULL,

314

https://determinate.systems/posts/determinate-nix-installer
https://determinate.systems/posts/determinate-nix-installer

10.7 Running a pipeline with Nix

git_pkgs = NULL,
ide = "other",
project_path = ".",
overwrite = TRUE)

this will create a default.nix file in the project root. Open a
terminal where default.nix is, and run nix-build. This will
create a file called result in the same folder. You can now drop
into a shell with the specified packages using nix-shell.

10.7 Running a pipeline with Nix

Once you’ve built and environment, and “dropped” into it, it’s
possible to run R by simply typing R in the console. If instead
you’ve installed an IDE, you can start is as well by typing the
IDE name’s. You can then work interactively with your data.
But it is also possible to run a command from that environment.
For instance, if you have a {targets} pipeline that you wish
to run in an environment built with Nix, you could run the fol-
lowing command (inside the folder containing the default.nix
file):

nix-shell default.nix --run "Rscript -e
'targets::tar_make()'"

This will run the pipeline and build the output. If the output is
a rendered Quarto document for instance, you will then see the
document appear in the specified output folder.

315

10 Reproducibility with Nix

10.8 CI/CD with Nix

It is also possible to run a {targets} pipeline on Github
Actions quite easily. Run rix::tar_nix_ga() to add the
file .github/workflows/run-pipeline.yaml to your project.
Now, each time you push changes to your Github repository,
the pipeline will be executed. Don’t forget to give read and
write rights to the Github Actions bot. You will find the
outputs of the pipeline in the targets-run branch of your
repository. See this repository for an example.

10.9 A polyglot environment

A polyglot environment is an environment that supplies several
languages, for data science that would typically be Python and
R. See this example, which outputs a shell with both R and
Python packages. It is also possible to orchestrate how the lan-
guages “talk” to each other using Nix itself. For example sup-
pose that you want to generate a Quarto document that needs
both R and Python. You could of course use dedicated chunks
within the Quarto document for this. But another way is instead
to use Nix as a build automation tool: this means that with only
Nix, you can replace a tool such as {targets} and another tool
for dependency management. This repository contains such an
example.

10.10 Conclusion

Nix is a very powerful tool, with a steep learning curve. Check
out these resources to learn more:

316

https://github.com/b-rodrigues/chronicler_targets_pipeline
https://github.com/b-rodrigues/raps_with_py/blob/master/default.nix
https://github.com/b-rodrigues/nixbat/tree/master

10.10 Conclusion

• Official Nix docs: https://nix.dev/

• Nix pills: https://nixos.org/guides/nix-pills/00-preface

• INRIA Nix tutorial: https://nix-tutorial.gitlabpages.inria.
fr/nix-tutorial/

• rix’s website (check out the Articles section): https://docs.
ropensci.org/rix/

• rix’s Github: https://github.com/ropensci/rix

• My blog posts: https://www.brodrigues.co/tags/nix/

317

https://nix.dev/
https://nixos.org/guides/nix-pills/00-preface
https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/
https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/
https://docs.ropensci.org/rix/
https://docs.ropensci.org/rix/
https://github.com/ropensci/rix
https://www.brodrigues.co/tags/nix/

11 What else should you
learn?

Here’s a list of things I think would be nice for you to invest
some time in, in no particular order.

11.1 Touch typing

One of the things I NEVER see discussed when talking “up-
skilling” is improving your typing speed. According to a survey
(which I’m sure is not statistically, nor scientifically sound, but
still…) by onlinetyping.org (which you can find here, most back
office workers (who spend all day typing) have a typing speed of
20 to 30 wpm (words per minute). According to this article by
the Atlantic people write about 41638 words in email per year.
You as programmers (yes, even if you’re focused on data, you’re
a programmer) very surely type twice or thrice this amount of
words per year. But let’s stay with 41638 words per year. That
would translate to almost 28 days of non stop typing at a typing
speed of 25 words per minute. Doubling to 50 wpm is actually
quite easy, and reaching 70 is really doable. This could improve
productivity, or better yet, make you go home earlier instead of
working until 19h00 every day because you type like a snail.

319

https://onlinetyping.org/blog/average-typing-speed.php#office-workers
https://www.theatlantic.com/technology/archive/2013/01/you-probably-write-a-novels-worth-of-email-every-year/266942/

11 What else should you learn?

You need to learn touch typing, meaning, typing without looking
at your keyboard.

11.2 Vim

Yes, I think you should learn vim, or at the very least, your text
editor of choice, by heart. You should know every keyboard
shortcut and every possibility that your text editor offers. You
should never touch the mouse when writing text. This is not just
because of productivity, but also for your health. Grabbing the
mouse to click one or twice, and then go back to typing, then go
back to moving the mouse, etc, will destroy your shoulder. By
keeping your hands on the keyboard at all times and minimizing
mouse usage, you may be able to grow old healthy. Vim helps
with that because it is a modal text editor (and most editors
actually ship a Vim-mode). Watch this video to get a quick
introduction on Vim, and how to enable Vim mode in Vscode.

11.3 Statistical modeling

Statistical modeling is crucial, and if you didn’t major in stats,
you very likely lack this knowledge. Here’s a reading (and watch-
ing) list:

• Regression and other stories (has a free PDF)
• Statistical Rethinking 2022 (on youtube)
• Mostly harmless econometrics

320

https://marketplace.visualstudio.com/items?itemName=vscodevim.vim
https://www.youtube.com/watch?v=-txKSRn0qeA
https://avehtari.github.io/ROS-Examples/
https://users.aalto.fi/~ave/ROS.pdf
https://www.youtube.com/watch?v=BYUykHScxj8&list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN
https://press.princeton.edu/books/paperback/9780691120355/mostly-harmless-econometrics

12 Conclusion

12.1 Why bother

We’re at the end of this course, which I hope you enjoyed. There
is now yet another question we need to ask ourselves: is this
worth it? Why should we bother with making our pipelines re-
producible? I believe that there are two, fundamental, essential
reasons.

The first one, is that time is finite, and working manually does
not scale. Reproducible pipelines do take time to set up, but
they allow us to win this time back once we start re-running
them. Wasting time and resources running things manually
(with the potential for introducing errors) is simply not accept-
able. This freed up time can then be used to provide further
value to your employer, yourself, and ideally your community as
well.

The second reason, is that setting up RAPs is in itself an enjoy-
able activity, which requires the full depth and breadth of your
skills. If you’re working in science, there is the added benefit
that by setting up a RAP you’re doing actual science: providing
a reproducible analysis where an hypothesis gets tested (an not
writing papers).

Peng, Roger D. 2011. “Reproducible Research in Computational
Science.” Science 334 (6060): 1226–27.

321

	Introduction
	Schedule
	Reproducible analytical pipelines?
	Data products?
	Machine learning?
	What actually is reproducibility?
	The requirements of a RAP

	Why R? Why not [insert your favourite programming language]
	Pre-requisites
	Grading
	Jargon
	Further reading
	License

	Introduction to R
	Reading in data with R
	A little aside on pipes
	Exploring and cleaning data with R
	Data visualization
	Further reading

	A primer on functional programming
	Introduction
	Defining your own functions
	Functional programming
	Further reading

	Git
	Introduction
	Installing Git
	Setting up a repo
	Cloning the repository onto your computer
	Your first commit
	Collaborating
	Branches
	Contributing to someone else's repository

	Package development
	Introduction
	Getting started
	Adding functions
	Functions dependencies

	Documentation
	Documenting functions
	Documenting the package
	Checking your package
	Installing your package

	Further reading

	Unit tests
	Introduction
	Testing your package
	Is the function returning an expected value for a given input?
	Can the function deal with all kinds of input?

	Back to developing again
	And back to testing

	Setting up pipelines with {targets}
	Introduction
	Build automation with R
	An aside on {renv}
	Our actual first pipeline
	Running someone else's pipeline
	Why we need more
	Further reading

	Data products
	Introduction
	A first taste of Quarto
	Python and Julia code chunks

	Other output formats
	Word
	Presentations
	PDF

	Interactive web applications with {shiny}
	The basic structure of a Shiny app
	Slightly more advanced shiny
	Basic optimization of Shiny apps
	Deploying your shiny app
	References

	How to build data products using {targets}

	Self-contained RAPs with Docker
	Introduction
	Installing Docker
	The Rocker Project
	Docker essentials
	Making our own images and run some code
	Reproducibility with Docker
	Building a truly reproducible pipeline
	One last thing
	Further reading

	Intro to CI/CD with Github Actions
	Introduction
	Getting your repo ready for Github Actions
	Building a Docker image and pushing it to a registry
	Running a pipeline straight from Github Actions
	Running unit tests on Github Actions
	Further reading

	Reproducibility with Nix
	The Nix package manager
	The Nix programming language
	The Nix package repository
	The NixOS operating system, Docker and Github Actions
	A first Nix expression
	The {rix} package
	Running a pipeline with Nix
	CI/CD with Nix
	A polyglot environment
	Conclusion

	What else should you learn?
	Touch typing
	Vim
	Statistical modeling

	Conclusion
	Why bother

